
MCS-265: The Theory of Computation Handout #R3

San Skulrattanakulchai

Gustavus Adolphus College February 20, 2014

Equivalence of DFAs and NFAs

Sipser Ch 1: p54–58

Definition. Two machines are equivalent if they accept the same language.

Theorem. Every DFA D has an equivalent NFA N .

Proof. Let DFA D = (Q, Σ, δ, q0, F ) be given. We define N = (Q, Σ, δ′, q0, F ) to be such

that δ′ : Q×Σ → 2Q where δ′(q, a) = {δ(q, a)} for every q ∈ Q and every a ∈ Σ. Clearly,

for every w ∈ Σ∗, D accepts w iff N accepts w.

Theorem. Every NFA N has an equivalent DFA D.

Proof. First some definitions. For any state q, define the ε-closure of q, written E(q), to

be the set of states reachable from q via a directed path of ε-edges. If R is a any subset

of states, define the ε-closure of R, written E(R), to be
⋃

r∈R E(r).

Sipser’s Method. Let NFA (possibly with ε-transitions) Nε = (Q, Σ, δ, q0, F ) be given.

Construct DFA D = (2Q, Σ, δ′, E(q0), F
′) where δ′ and F ′ are defined as

δ′(R, a) =
⋃
r∈R

E(δ(r, a)) for every R ∈ 2Q and every a ∈ Σ,

and

F ′ = {R ∈ 2Q : R ∩ F 6= ∅}.

See Sipser Example 1.41, pages 56–58.

2-Step Method. Let NFA (possibly with ε-transitions) Nε = (Q, Σ, δ, q0, F ) be given.

Step 1. If Nε has no ε-transitions, let N = Nε and go to Step 2. Otherwise, construct

an NFA (without ε-transitions) N = (Q, Σ, δ′, q0, F
′) as follows. The transition function

δ′ : Q× Σ → 2Q is defined to be

δ′(q, a) =
⋃

p∈E(q)

δ(p, a) for every q ∈ Q and every a ∈ Σ



2 MCS-265: Handout #R3

and F ′ is defined to be

F ′ = {q ∈ Q : E(q) ∩ F 6= ∅}.

Step 2. Starting off of the NFA N from Step 1, construct a DFA D = (2Q, Σ, δ′′, {q0}, F ′′)

as follows. The transition function δ′′ : 2Q × Σ → 2Q is defined to be

δ′′(R, a) =
⋃
r∈R

δ′(r, a) for every R ∈ 2Q and every a ∈ Σ

and F ′′ is defined to be

F ′′ = {R ∈ 2Q : R ∩ F ′ 6= ∅}.

We can show that for any string w ∈ Σ∗, we have Nε accepts w iff N accepts w iff D

accepts w.

Example. Let’s demonstrate the 2-step method on the NFA N4 on page 57 that Sipser

uses. Here is the transition table for N4. (Convention: A start state has an arrow pointing

to it and a final state is starred.)

δ a b ε

→∗ 1 ∅ {2} {3}
2 {2, 3} {3} ∅
3 {1} ∅ ∅

In Step 1, we remove the only ε-transition to get the following transition table for an

NFA equivalent to N4 that has no ε-transitions.

δ′ a b

→∗ 1 {1} {2}
2 {2, 3} {3}
3 {1} ∅

In Step 2, we convert the NFA without ε-transitions into an equivalent DFA. While we

are at it, we make sure to eliminate states of the DFA not reachable from the start state.

Here is the transition table for the DFA.



MCS-265: Handout #R3 3

δ′′ a b

→∗ {1} {1} {2}
{2} {2, 3} {3}
{3} {1} ∅

{2, 3} {1, 2, 3} {3}
∗{1, 2, 3} {1, 2, 3} {2, 3}

∅ ∅ ∅

It turns out that in this case the 2-step method gives exactly the same machine as

obtained by Sipser’s method, with the provision that state {1} in the the 2-step method

corresponds to state {1, 3} in Sipser’s method.

Remark. The number of states in the final DFA D can be an exponential function on

the number of states of the given NFA Nε. In practice, we only introduce a state of D

after determining that is is reachable from the start state, like shown in our example

above. However, it has been proved that there exist languages whose smallest DFA has

exponentially more states than its smallest NFA.


