Regular Expressions

Sipser Ch 1: p63-66

Regular Expressions (R.E.'s)

Given an alphabet Σ, a regular expression over Σ is recursively defined as follows.

1. Each $a \in \Sigma$ is a regular expression.
2. \emptyset is a regular expression.
3. ε is a regular expression.
4. If R_{1} and R_{2} are regular expressions, then $\left(R_{1} \cup R_{2}\right)$ is a regular expression.
5. If R_{1} and R_{2} are regular expressions, then $\left(R_{1} \circ R_{2}\right)$ is a regular expression.
6. If R is a regular expression, then $\left(R^{*}\right)$ is a regular expression.

Something is a regular expression if and only if it follows from one of the above rules.
To make regular expressions easy to write and also unambiguous, we

- use juxtaposition instead of \circ,
- declare that * has higher precedence than \circ, and that o has higher precedence than \cup, and omit enclosing parentheses when possible, and
- retain pairs of enclosing parentheses only when needed to override the default precedence rules.

Therefore, 01^{*} means $\left(0 \circ\left(1^{*}\right)\right)$, which is different from $\left((0 \circ 1)^{*}\right)$. Similarly, $10 \cup 01$ means $((1 \circ 0) \cup(0 \circ 1))$, which is different from $((1 \circ(0 \cup 0)) \circ 1)$ or $(1 \circ((0 \cup 0) \circ 1))$.
We associate each R.E. R with its language $L(R)$ as follows.

1. Each $a \in \Sigma$ is associated with $\{a\}$.
2. \emptyset is associated with \emptyset
3. ε is associated with $\{\varepsilon\}$.
4. If $L\left(R_{1}\right)$ is the language of R_{1} and $L\left(R_{2}\right)$ is the language of R_{2}, then $L\left(R_{1}\right) \cup L\left(R_{2}\right)$ is the language of $\left(R_{1} \cup R_{2}\right)$.
5. If $L\left(R_{1}\right)$ is the language of R_{1} and $L\left(R_{2}\right)$ is the language of R_{2}, then $L\left(R_{1}\right) \circ L\left(R_{2}\right)$ is the language of $\left(R_{1} \circ R_{2}\right)$.
6. If $L(R)$ is the language of R, then $L(R)^{*}$ is the language of (R^{*}).

Exercise.

1. Show that the rule " ε is an regular expression" is superfluous.

Notes.

1. For an R.E. R and nonnegative integer n, R^{+}is short for $\left(R \circ\left(R^{*}\right)\right)$, and R^{n} is short for n copies of R 's concatenated (in any order!).
2. The three operations \cup, \circ and ${ }^{*}$ on languages are termed regular operations. A language representable by an R.E. is called a regular language.
