
MCS-265: The Theory of Computation Handout #T1

San Skulrattanakulchai

Gustavus Adolphus College April 8, 2014

Designing 1-tape Deterministic Turing Machines

A TM corresponds to a computer program. We will develop a pseudocode language for

designing TM’s. It has the following features.

• There are four basic statements:

– move R

– move L

– write X & move R

– write X & move L

where X is a tape symbol. A basic statement corresponds to one TM transition

minus the state change. That is, a statement can move one cell either left or right,

after possibly writing a new symbol X on the current tape cell.

• The special basic statement accept means the TM enters the final (accepting) state.

• The special basic statement die corresponds to the fact the TM enters the rejecting

state.

• A sequence of statements can be turned into one statement by putting braces

around them.

• There are 3 control flow constructs: while, if, and goto. The syntax is

while 〈condition〉 do 〈statement〉,

if 〈condition〉 then 〈statement〉 [else 〈statement〉],

and

goto 〈label〉

2 MCS-265: Handout #T1

respectively. The 〈condition〉 in the while and if statements is a disjuntion in-

volving (one or more) input symbols. These three constructs mean just like their

counterparts in C or java.

• A comment starts with // and takes effect till the end of line.

• There is no statement separator. Indentation is used to distinguish statement levels.

To translate a program written in pseudocode into a TM, we first introduce TM states

as labels for pseudocode statements at appropriate places. We then manually translate

each pseudocode statement into TM transitions.

An example will make this clear. Say we want to design a TM to recognize the language

of strings over Σ = {0, 1} containing an equal number of 0’s and 1’s. We will use

Γ = {0, 1, X, Y,B} as our tape alphabet. (B stands for the blank symbol.) Our algorithm

works by first finding the leftmost 0 or 1, and turning it into an X. It then scans right

to find the first opposite symbol (1 for 0, and 0 for 1) and then turning it into a Y. It

then scans left to find the rightmost X and repeats this process. The algorithm accepts

if every symbol turned into X has a matching opposite symbol turned into Y. It rejects

otherwise. Here is the pseudocode.

MCS-265: Handout #T1 3

q 0: while X or Y do

move R

if B then

accept

else if 0 then {
write X & move R

while 0 or Y do

move R

if 1 then

write Y & move L

else

die // is seeing a B, which means input has more 0’s than 1’s

while 0 or Y do

move L

// must now be seeing an X

goto q 0

} else if 1 then {
// symmetric, similar to the 0 case, i.e.,

// same as above, with roles of 0 and 1 interchanged

}

We need to prove that this algorithm works correctly. Let w denote the non-blank portion

of the input tape. We make the following claims.

1. At any time, w ∈ {X, Y, 0, 1}∗.

2. Whenever the TM is at q 0, the number of occurrences of X’s within w equals the

number of occurrences of Y ’s within w.

3. At any time, in any prefix of w, the number of occurrences of X’s is at least the

number of occurrences of Y ’s.

4. At any time, no 0 or 1 occurs to the left of the rightmost X.

5. There exists a constant k such that whenever the TM is at q 0, the difference

4 MCS-265: Handout #T1

between the number of occurrences of 0’s within w and the number of occurrences

of 1’s within w equals k.

6. Each time the TM reenters q 0, the number of occurrences of 0’s and 1’s within w

each decreases by 1.

7. This TM always halts, either because it dies or enters an accepting state.

8. If the TM accepts, 0 occurs as many times as 1 in the input. If the TM dies, 0 does

not occur as many times as 1 in the input.

These claims should be proved in the order listed. Many of these claims can be proved

by induction on the number of times the TM enters q 0. The last two claims prove

correctness of the TM.

We will now translate the pseudocode into TM transitions. First, by inspecting the code,

we insert labels as follows.

MCS-265: Handout #T1 5

q 0: while X or Y do

move R

if B then

accept

else if 0 then {
q 1: write X & move R

while 0 or Y do

move R

if 1 then

write Y & move L

else

die // is seeing a B, which means input has more 0’s than 1’s

q 2: while 0 or Y do

move L

// must now be seeing an X

goto q 0

} else if 1 then {
q 3: write X & move R

while 1 or Y do

move R

if 0 then

write Y & move L

else

die // is seeing a B, which means input has more 1’s than 0’s

q 4: while 1 or Y do

move L

// must now be seeing an X

goto q 0

}

Next, we translate each pseudocode statement into transitions to get this table.

6 MCS-265: Handout #T1

δ 0 1 X Y B

q0 (q1, X,R) (q3, X,R) (q0, X,R) (q0, Y, R) (qf , B, R)

q1 (q1, 0, R) (q2, Y, L) − (q1, Y, R) −
q2 (q2, 0, L) − (q0, X,R) (q2, Y, L) −
q3 (q4, Y, L) (q3, 1, R) − (q3, Y, R) −
q4 − (q4, 1, L) (q0, X,R) (q4, Y, L) −
qf − − − − −

This TM has 6 states. Upon closer examination (of both the transition table and the

pseudocode), we find that states q2 and q4 can safely be merged (Why?). Merging them

into q2 gives the following equivalent TM with 5 states.

δ 0 1 X Y B

q0 (q1, X,R) (q3, X,R) (q0, X,R) (q0, Y, R) (qf , B, R)

q1 (q1, 0, R) (q2, Y, L) − (q1, Y, R) −
q2 (q2, 0, L) (q2, 1, L) (q0, X,R) (q2, Y, L) −
q3 (q2, Y, L) (q3, 1, R) − (q3, Y, R) −
qf − − − − −

