Set Theory

A set is a collection of objects considered as a whole. The main concept is that of membership. Given an object x and a set A, we should be able to answer whether x is a member of A or not.

There are many terms whose meaning are similar to set. These include class, collection, family, and space.

A finite set is one whose size is a natural number. An infinite set has a size that cannot be given as a natural number.

Some important number sets
$\mathbb{N}=\{0,1,2,3, \ldots\}$
$\mathbb{Z}=$ the set of all integers
$\mathbb{Q}=$ the set of all rational numbers
$\mathbb{R}=$ the set of all real numbers
$\mathbb{C}=$ the set of all complex numbers

Examples of sets written

- by enumeration: $\{1,2,3\}$
- by set former: $\{n \in \mathbb{Z}:|n| \leq 3\}$
- by formulaic set former: $\left\{n^{2}: n \in \mathbb{N}\right\}$

The empty set \emptyset, sometimes written $\}$, has no member.

Two sets are equal, written $A=B$, if they contain the same elements.

Notation:

ϵ	is a member of	\notin	is not a member of
\subseteq	is a subset of	\subset	is a proper subset of
\nsubseteq	is not a subset of	$\not \subset$	is not a proper subset of
\supseteq	is a superset of	\supset	is a proper superset of
\nsupseteq	is not a superset of	$\not \supset$	is not a proper superset of

where
$A \subseteq B$ means "for all x, if $x \in A$ then $x \in B$."
$A \subset B$ means " $A \subseteq B$ and $A \neq B$."
$A \supseteq B$ means " $B \subseteq A$."
$A \supset B$ means " $B \subset A$."
$A=B$ if and only if $A \subseteq B$ and $B \subseteq A$.

Set operations:

\cup	union
\cap	intersection
-	set difference
A^{c}	complement of A

where
$A \cup B$ means $\{x: x \in A$ or $x \in B\}$.
$A \cap B$ means $\{x: x \in A$ and $x \in B\}$.
$A-B$ means $\{x: x \in A$ and $x \notin B\}$.
A^{c} means $U-A$ (where U is the "universal set").

Sets A and B are disjoint if their intersection is empty, i.e., $A \cap B=\emptyset$.

Venn-Euler Diagram can help one understand why some theorem is true, or even suggest a proof.

Some rules governing set operations:

$A \cup B=B \cup A$	(commutativity of union)		
$A \cap B=B \cap A$	(commutativity of intersection)		
$(A \cup B) \cup C=A \cup(B \cup C)$	(associativity of union)		
$(A \cap B) \cap C=A \cap(B \cap C)$	(associativity of intersection)		
$A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$	(distributivity)		
$A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$	(distributivity)		
$\left(A^{c}\right)^{c}=A$	(double complement)		
$(A \cup B)^{c}=A^{c} \cap B^{c}$	$(A \cap B)^{c}=A^{c} \cup B^{c}$	(DeMorgan's laws)	(DeMander
:---			

The power set $\mathcal{P}(A)$ (or 2^{A}) of A is the collection of all subsets of A. In other words, $\mathcal{P}(A)=\{S: S \subseteq A\}$.

Theorem. If A is a finite set, then $|\mathcal{P}(A)|=2^{|A|}$.
Proof. . . .

For $a, b \in \mathbb{Z}$ with $a \leq b$, we write $\{a, \ldots, b\}$ to denote $\{i \in \mathbb{Z}: a \leq i \leq b\}$. For $n \in \mathbb{N}$ we write $[n]$ for $\{1, \ldots, n\}$.

Let $a, b \in \mathbb{R}$ with $a \leq b$. The notation $[a, b]$ denotes the closed interval

$$
\{x \in \mathbb{R}: a \leq x \leq b\}
$$

The notation (a, b) denotes the open interval

$$
\{x \in \mathbb{R}: a<x<b\} .
$$

