Logic

A proposition is a statement that is either true or false, but not both. Here are some example propositions.

- $\sqrt{2}$ is an irrational number.
- $1<1$.
- Some integers x, y, z satisfy $x^{3}+y^{3}=z^{3}$.
- There are no positive integers x, y, z such that $x^{4}+y^{4}=z^{4}$.

And here are some example non-propositions.

- What do you mean by that?
- How pretty!
- Please give me a call.
- Barack Obama is an honest president.
- 23 is an interesting number.
- $x^{2}+3 x-4=0$.
- This statement is false.

A compound proposition can be constructed from any propositions p, q using the logical connectives $\wedge, \vee, \neg, \Longrightarrow, \Longleftrightarrow$.

Compound Proposition	Formal Sentence	Meaning
conjunction	$p \wedge q$	p and q
disjunction	$p \vee q$	p or q
negation	$\neg p$	not p
implication	$p \Longrightarrow q$	p implies q
biconditional	$p \Longleftrightarrow q$	p if and only if q

In the implication $p \Longrightarrow q$, the proposition p is called premise or hypothesis or antecedent, and the proposition q is called conclusion or consequence or consequent.

Truth Tables

These are some of the ways to express the implication " $p \Longrightarrow q$ " in English.
if p then q
p implies q
q is implied by p
p only if q
q if p
p is sufficient for q
q is necessary for p
q whenever p
These are some of the ways to express the biconditional " $p \Longleftrightarrow q$ " in English.
p if and only if q
p is necessary and sufficient for q
q is necessary and sufficient for p
p implies q and vice versa
if p then q and vice versa

Definitions:

- An implication is said to be trivially true when its conclusion is true.
- An implication is said to be vacuously true when its hypothesis is false.
- The converse of " $p \Longrightarrow q$ " is " $q \Longrightarrow p$."
- The contrapositive of " $p \Longrightarrow q$ " is " $\neg q \Longrightarrow \neg p$."
- Two propositions are logically equivalent when they have the same truth value for all possible combinations of the truth values of their constituent propositions.
- A tautology is a proposition that's always true, eg, " $p \vee \neg p$."
- A contradiction is a proposition that's always false, eg, " $p \wedge \neg p$."
- A contingency is proposition that's sometimes true and sometimes false, eg, " $p \vee p$."

Question: which of these are tautology? contradiction? contingency?

$$
\begin{aligned}
& p \Longrightarrow p \\
& (\neg p) \Longrightarrow p \\
& {[(p \Longrightarrow q) \wedge p] \wedge(\neg q)} \\
& {[p \vee(p \wedge q)] \Longrightarrow p} \\
& {[p \wedge(p \vee q)] \Longleftrightarrow \neg p}
\end{aligned}
$$

Some important logical equivalences

$$
\begin{array}{ll}
p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r) & p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r) \\
p \wedge T \equiv p & p \vee F \equiv p \\
p \wedge F \equiv F & p \vee T \equiv T \\
\neg(p \wedge q) \equiv(\neg p) \vee(\neg q) & \neg(p \vee q) \equiv(\neg p) \wedge(\neg q) \\
\neg(\neg p) \equiv p & p \Longleftrightarrow q \equiv q \Longleftrightarrow p \\
p \wedge q \equiv q \wedge p & p \vee q \equiv q \vee p \\
p \Longrightarrow q \equiv(\neg q) \Longrightarrow(\neg p) & p \Longrightarrow q \equiv(\neg p) \vee q \\
\neg(p \Longrightarrow q) \equiv p \wedge(\neg q) & (\neg p) \Longrightarrow F \equiv p \\
p \Longleftrightarrow q \equiv(p \Longrightarrow q) \wedge(q \Longrightarrow p) & p \Longleftrightarrow q \equiv(p \wedge q) \vee(\neg p \wedge \neg q) \\
(p \vee q) \Longrightarrow r \equiv(p \Longrightarrow r) \wedge(q \Longrightarrow r) & (p \wedge q) \Longrightarrow r \equiv p \Longrightarrow(q \Longrightarrow r)
\end{array}
$$

Non-proposition statements containing variables, the so-called open sentences, can be turned into propositions by quantifying the variables.

The existential quantifier \exists means "at least one." In English, we can express it like there is ... there exists ... some ... for some ...

The universal quantifier \forall means "all." Some ways to say it in English are all... for all... every... for every...
each ... for each ... any ... for any ...
Question: What do the following English sentences mean?

- There is a male student in the MCS-236 class.
- There is a female student in the MCS-236 class.
- A rational number is not integral.
- Odd integers are multiples of 3 .
- Some schiffs are fibs.
- All fibs are fobs.
- $a+b=b+a$.

Exercise: Rewrite all ambiguous sentences above to disambiguate them.
Here are two common conventions in mathematics writing.

- Universal quantifiers are routinely omitted when possible.
- In definition, the word 'if' actually means 'if and only if.'

Beware of the following.

- Depending on context, the word 'one' could mean 'at least one' or 'exactly one.' Similarly for 'two', 'there', ... , etc.
- Oftentimes the word 'a' should be replaced by 'any.'

To negate quantified propositions, use the logical equivalence

$$
\neg[\forall x . \varphi(x)] \equiv \exists x . \neg \varphi(x)
$$

or the logical equivalence

$$
\neg[\exists x . \varphi(x)] \equiv \forall x . \neg \varphi(x)
$$

A sentence of the form $\forall x \in X . \varphi(x)$ is short for $\forall x[x \in X \Longrightarrow \varphi(x)]$.
A sentence of the form $\exists x \in X . \varphi(x)$ is short for $\exists x[x \in X \wedge \varphi(x)]$.
A sentence of the form, "For every element of the nonempty set . . blah ..." is always true.

A sentence of the form, "There exists some element in the nonempty set such that ...blah ..." is always false.

The term unique in mathematical writing means "exactly one."
The term distinct in mathematical writing means "different."
The term write in mathematical writing often means "let."
The phrase without loss of generality in mathematical writing has many meanings, as will be demonstrated throughout this course!

