Solving Quadratic Equations

Problem Given real numbers a, b, and c, where $a>0$, find all real numbers x such that $a x^{2}+b x+c=0$. (Do you see why we may assume $a>0$ without losing any generality?)

Answer First we assume x can be any complex number. The equation

$$
a x^{2}+b x+c=0
$$

holds if and only if the equation

$$
a\left(x^{2}+\frac{b}{a} x+\frac{c}{a}\right)=0
$$

holds if and only if the equation

$$
x^{2}+\frac{b}{a} x+\frac{c}{a}=0
$$

holds if and only if the equation

$$
x^{2}+2 \frac{b}{2 a} x+\frac{b^{2}}{4 a^{2}}-\frac{b^{2}}{4 a^{2}}+\frac{c}{a}=0
$$

holds if and only if the equation

$$
\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}}{4 a^{2}}+\frac{c}{a}=0
$$

holds if and only if the equation

$$
\left(x+\frac{b}{2 a}\right)^{2}=\frac{b^{2}}{4 a^{2}}-\frac{c}{a}
$$

holds if and only if the equation

$$
\left(x+\frac{b}{2 a}\right)^{2}=\frac{b^{2}-4 a c}{4 a^{2}}
$$

holds if and only if

$$
x+\frac{b}{2 a}= \pm \sqrt{\frac{b^{2}-4 a c}{4 a^{2}}}
$$

holds if and only if

$$
x=-\frac{b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}
$$

holds if and only if

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Thus, there are exactly 2 (possibly non-unique) solutions in complex numbers:

$$
x=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}
$$

or

$$
x=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
$$

There are no real solutions when $b^{2}-4 a c<0$. There is exactly 1 real solution when $b^{2}-4 a c=0$. There are exactly 2 real solutions when $b^{2}-4 a c>0$.

