Propositions 1.43a and 1.43b

1.43. Proposition Elementary consequences of the field axioms.
a) $x+z=y+z$ implies $x=y$
b) $x \cdot 0=0$

Proof. a) Let x, y, and z be real numbers satisfying $x+z=y+z$. By axiom A4, let w be a real number such that $z+w=0$. Adding w to both sides of equation $x+z=y+z$ leads to

$$
(x+z)+w=(y+z)+w
$$

which by axiom A1 leads to

$$
x+(z+w)=y+(z+w)
$$

which by definition of w leads to

$$
x+0=y+0
$$

which by axiom A3 leads to

$$
x=y,
$$

the desired result.
b) Let x be any real number. Applying axiom A3 to the case when $x=0$ we have $0+0=0$. Therefore,

$$
x \cdot(0+0)=x \cdot 0
$$

which by axiom DL leads to

$$
x \cdot 0+x \cdot 0=x \cdot 0
$$

By axiom M0, x. 0 is a real number. By axiom A 4 , let w be a real number such that $x \cdot 0+w=0$. Adding w to both sides of equation $x \cdot 0+x \cdot 0=x \cdot 0$ gives

$$
(x \cdot 0+x \cdot 0)+w=x \cdot 0+w
$$

which by axiom A1 leads to

$$
x \cdot 0+(x \cdot 0+w)=x \cdot 0+w
$$

which by definition of w leads to

$$
x \cdot 0+0=0
$$

which by axiom A3 leads to

$$
x \cdot 0=0,
$$

the desired result.

