Induction

Theorem. Any natural number n satisfies

$$1 + 2 + \dots + n = \frac{n(n+1)}{2} \tag{1}$$

Proof by Weak Induction. When n = 0, the left hand side of Equation (1) equals 0 and the right hand side equals $\frac{0 \cdot 1}{2} = 0$. So Equation (1) holds in the base case.

Now let k be any nonnegative integer and assume inductively that Equation (1) holds when n = k. We have

$$1 + 2 + \dots + k + (k+1) = \frac{k(k+1)}{2} + (k+1)$$
$$= \frac{k^2 + k + 2k + 2}{2}$$
$$= \frac{k^2 + 3k + 2}{2}$$
$$= \frac{(k+1)(k+2)}{2}$$

so Equation (1) holds when n = k + 1 as well. The result follows by Mathematical Induction.

_	_

Theorem. For any integer n, if $n \ge 4$, then $2^n \ge n^2$.

Proof by Weak Induction. When n = 4, we have $2^4 = 16 \ge 16 = 4^2$ so the inequality holds in the base case.

Now let n be any integer ≥ 4 and assume inductively that $2^n \geq n^2$. Since $n \geq 4 \geq 3$, we have

$$n-1 \ge 2 \ge \sqrt{2},$$

whence

$$(n-1)^2 \ge 2$$

whence

$$n^2 - 2n + 1 \ge 2$$

whence

 $n^2 \ge 2n + 1.$

Therefore,

$$2^{n+1} = 2^n + 2^n \ge n^2 + n^2 \ge n^2 + 2n + 1 = (n+1)^2.$$

Therefore, $2^n \ge n^2$ whenever $n \ge 4$ by Mathematical Induction.

Theorem. Any positive integer ≥ 2 can be written as a product of primes.

Proof by Strong Induction. The integer 2 is prime so the result holds in the base case. Now let n be any integer > 2 and assume inductively that all integers ≥ 2 but < n can be written as a product of primes. If n itself is prime, then we are done. So suppose from now on that n is not prime. So there exists an integer d_1 , where $1 < d_1 < n$, such that $n = d_1 d_2$ for some integer d_2 . We claim that d_2 satisfies $1 < d_2 < n$ as well. That $1 < d_2$ follows from $d_1 < n = d_1d_2$ and $d_1 > 0$. To see that $d_2 < n$, assume for the sake of contradiction that $d_2 \ge n$. Since $d_1 > 1$, we have $n = d_1 d_2 > n$, a contradiction. By inductive hypothesis, it follows that both d_1 and d_2 are product of primes, say $d_1 = p_1 \cdot p_2 \cdots p_k$ and say $d_1 = q_1 \cdot q_2 \cdots q_\ell$ where the p's and q's are primes. So $n = d_1 d_2 = p_1 \cdot p_2 \cdots p_k \cdot q_1 \cdot q_2 \cdots q_\ell$, a product of primes as desired. The result follows by Mathematical Induction.