Induction

Theorem. Any natural number n satisfies

$$
\begin{equation*}
1+2+\cdots+n=\frac{n(n+1)}{2} \tag{1}
\end{equation*}
$$

Proof by Weak Induction. When $n=0$, the left hand side of Equation (1) equals 0 and the right hand side equals $\frac{0 \cdot 1}{2}=0$. So Equation (1) holds in the base case.
Now let k be any nonnegative integer and assume inductively that Equation (1) holds when $n=k$. We have

$$
\begin{aligned}
1+2+\cdots+k+(k+1) & =\frac{k(k+1)}{2}+(k+1) \\
& =\frac{k^{2}+k+2 k+2}{2} \\
& =\frac{k^{2}+3 k+2}{2} \\
& =\frac{(k+1)(k+2)}{2}
\end{aligned}
$$

so Equation (1) holds when $n=k+1$ as well.
The result follows by Mathematical Induction.

Theorem. For any integer n, if $n \geq 4$, then $2^{n} \geq n^{2}$.
Proof by Weak Induction. When $n=4$, we have $2^{4}=16 \geq 16=4^{2}$ so the inequality holds in the base case.
Now let n be any integer ≥ 4 and assume inductively that $2^{n} \geq n^{2}$. Since $n \geq 4 \geq 3$, we have

$$
n-1 \geq 2 \geq \sqrt{2}
$$

whence

$$
(n-1)^{2} \geq 2
$$

whence

$$
n^{2}-2 n+1 \geq 2
$$

whence

$$
n^{2} \geq 2 n+1
$$

Therefore,

$$
2^{n+1}=2^{n}+2^{n} \geq n^{2}+n^{2} \geq n^{2}+2 n+1=(n+1)^{2} .
$$

Therefore, $2^{n} \geq n^{2}$ whenever $n \geq 4$ by Mathematical Induction.

Theorem. Any positive integer ≥ 2 can be written as a product of primes.
Proof by Strong Induction. The integer 2 is prime so the result holds in the base case.
Now let n be any integer >2 and assume inductively that all integers ≥ 2 but $<n$ can be written as a product of primes. If n itself is prime, then we are done. So supppose from now on that n is not prime. So there exists an integer d_{1}, where $1<d_{1}<n$, such that $n=d_{1} d_{2}$ for some integer d_{2}. We claim that d_{2} satisfies $1<d_{2}<n$ as well. That $1<d_{2}$ follows from $d_{1}<n=d_{1} d_{2}$ and $d_{1}>0$. To see that $d_{2}<n$, assume for the sake of contradiction that $d_{2} \geq n$. Since $d_{1}>1$, we have $n=d_{1} d_{2}>n$, a contradiction. By inductive hypothesis, it follows that both d_{1} and d_{2} are product of primes, say $d_{1}=p_{1} \cdot p_{2} \cdots p_{k}$ and say $d_{1}=q_{1} \cdot q_{2} \cdots q_{\ell}$ where the p 's and q 's are primes. So $n=d_{1} d_{2}=p_{1} \cdot p_{2} \cdots p_{k} \cdot q_{1} \cdot q_{2} \cdots q_{\ell}$, a product of primes as desired.
The result follows by Mathematical Induction.

