Cardinality of the union of two countable sets

Theorem. If sets A and B are countable, then $A \cup B$ is countable.

Proof. By countability of A, let a_{1}, a_{2}, \ldots, enumerate A, that is, it lists each element of A exactly once. By countability of B, let b_{1}, b_{2}, \ldots, enumerate B. Obtain the sequence c_{1}, c_{2}, \ldots, by defining

$$
c_{n}= \begin{cases}a_{2 n-1}, & \text { if } n \text { is odd } \\ b_{2 n}, & \text { if } n \text { is even }\end{cases}
$$

From the sequence c_{1}, c_{2}, \ldots, we obtain a subsequence d_{1}, d_{2}, \ldots, that enumerates $A \cup B$ as follows. Set $d_{1}:=c_{1}$. Suppose d_{n} has already be chosen. We choose d_{n+1} by the following method. The set $X_{n}=\left\{k \in \mathbb{N}: c_{k}\right.$ is not equal to d_{i} for any $\left.i=1,2, \ldots, n\right\}$ is not empty since the subsequence $c_{1}, c_{3}, c_{5}, \ldots$, of $\langle c\rangle$ enumerates A and is infinite but $\left\langle d_{1}, d_{2}, \ldots, d_{n}\right\rangle$ is finite. By the Well-Ordering property of \mathbb{N}, let k be the least element of X_{n}, and set $d_{n+1}:=c_{k}$.
Clearly d_{1}, d_{2}, \ldots, lists every element of $A \cup B$, each exactly once. Thus $A \cup B$ is either finite or countable. However, A was countable by assumption and $A \subseteq A \cup B$, so $A \cup B$ is not finite; thus it is countable.

