Cardinality of the union of two countable sets

Theorem. If sets A and B are countable, then $A \cup B$ is countable.

Proof. By countability of A, let a_1, a_2, \ldots , enumerate A, that is, it lists each element of A exactly once. By countability of B, let b_1, b_2, \ldots , enumerate B. Obtain the sequence c_1, c_2, \ldots , by defining

$$c_n = \begin{cases} a_{2n-1}, & \text{if } n \text{ is odd} \\ b_{2n}, & \text{if } n \text{ is even.} \end{cases}$$

From the sequence c_1, c_2, \ldots , we obtain a subsequence d_1, d_2, \ldots , that enumerates $A \cup B$ as follows. Set $d_1 := c_1$. Suppose d_n has already be chosen. We choose d_{n+1} by the following method. The set $X_n = \{k \in \mathbb{N} : c_k \text{ is not equal to } d_i \text{ for any } i = 1, 2, \ldots, n\}$ is not empty since the subsequence c_1, c_3, c_5, \ldots , of $\langle c \rangle$ enumerates A and is infinite but $\langle d_1, d_2, \ldots, d_n \rangle$ is finite. By the Well-Ordering property of \mathbb{N} , let k be the least element of X_n , and set $d_{n+1} := c_k$.

Clearly d_1, d_2, \ldots , lists every element of $A \cup B$, each exactly once. Thus $A \cup B$ is either finite or countable. However, A was countable by assumption and $A \subseteq A \cup B$, so $A \cup B$ is not finite; thus it is countable.