Subset Sum Problem Revisited

Problem
We are given a positive integer \(t \) and a sequence \(A = \langle a_1, a_2, \ldots, a_n \rangle \) of (not necessarily distinct) \(n \) positive integers. We want to find out whether some subsequence of \(A \) sums to \(t \).

Dynamic Programming Solution
For \(1 \leq i \leq n \) and \(0 \leq v \leq t \), define \(m(i, v) \) to be

\[
m(i, v) = \begin{cases}
 \text{true} & \text{if some subsequence of } \langle a_1, a_2, \ldots, a_i \rangle \text{ sums to } v \\
 \text{false} & \text{otherwise.}
\end{cases}
\]

We seek \(m(n, t) \).

Optimal Substructure Property
Clearly \(m(i, 0) = \text{true} \) for all \(1 \leq i \leq n \).

Now let \(i, v \) be positive integers. Suppose the sequence \(\langle a_1, a_2, \ldots, a_i \rangle \) contains a subsequence \(\langle a_{j_1}, a_{j_2}, \ldots, a_{j_k} \rangle \) that sums to \(v \).

Case 1: \(j_k = i \). Then the sequence \(\langle a_1, a_2, \ldots, a_{i-1} \rangle \) contains the subsequence \(\langle a_{j_1}, a_{j_2}, \ldots, a_{j_{k-1}} \rangle \) that sums to \(v - a_i \).

Case 2: \(j_k \neq i \). Then the sequence \(\langle a_1, a_2, \ldots, a_{i-1} \rangle \) contains the subsequence \(\langle a_{j_1}, a_{j_2}, \ldots, a_{j_k} \rangle \) that sums to \(v \).

This gives us the following recurrence.

Recurrence

\[
m(i, v) = \begin{cases}
 \text{false} & \text{if } i = 0 \text{ or } v < 0 \\
 \text{true} & \text{if } i \geq 1, v = 0 \\
 m(i - 1, v) \lor m(i - 1, v - a_i) & \text{if } i \geq 1, v > 0
\end{cases}
\]

In this recurrence, \(i \) is allowed to be 0, and \(v \) is allowed to be negative, i.e., \(0 \leq i \leq n \) and \(v \leq t \). The base case of “\(i = 0 \) or \(v < 0 \)” is artificial, introduced to simplify the recurrence.
Subset Sum Algorithm

Step 1. Fill in a table of $m(\cdot, \cdot)$ values. We can fill the table row-by-row or column-by-column, with both the row and column indices increasing.

Step 2. Return the value $m(n, t)$ as answer.

Remark on Implementation
Even though the recurrence seems to require an infinite space to implement (because v can be any negative integer), we only need a table of size $n(t + 1)$ to store values of $m(i, v)$ for all $1 \leq i \leq n$ and $0 \leq v \leq t$. We implement a function for accessing $m(i, v)$. When an access(i, v) is requested, we check whether $v < 0$ or not. If it is, we return false; otherwise we access the table as usual.

Running Time
Step 1 fills out each table entry in $O(1)$ time, $O(nt)$ time total.
Step 2 takes $O(1)$ time.

Remarks

1. Artificial base cases always help simplify recurrences. For example, without it the Subset Sum Problem recurrence will have to be written like this:

$$m(i, v) = \begin{cases}
\text{true} & \text{if } v = 0 \\
\text{true} & \text{if } i = 1, v > 0, v = a_1 \\
\text{false} & \text{if } i = 1, v > 0, v \neq a_1 \\
m(i - 1, v) & \text{if } i > 1, v > 0, a_i > v \\
m(i - 1, v) \lor m(i - 1, v - a_i) & \text{if } i > 1, v > 0, a_i \leq v
\end{cases}$$

In this recurrence, $1 \leq i \leq n$ and $0 \leq v \leq t$.

2. If the set of numbers that adds up to the target t is desired, we can get them from the filled-out $M[\cdot, \cdot]$ table directly without having to use an optimizer table.

3. Instead of asking whether some subset of A summing to t exists, we can instead ask how many subsets sum to t.

4. Subset Sum is an NP-complete problem. Dynamic programming solves it in pseudopolynomial time.
5. The 0-1 Knapsack Problem is similar to the Subset Sum Problem. (See CLRS p.425–426.)