
Unix CLI

San Skulrattanakulchai

2/8/2016



File System Structure

I Virtually all modern operating systems have a hierarchical file
structure.

I I am assuming you are using some kind of UNIX system, e.g.,
linux, OS X.

I A directory (or folder) contains other files and/or directories.
I The root directory is the starting point of the access path of

all files and directories in the system. It is denoted by the
forward slash character /

I When interacting with the user, the OS assumes you are
currently at some specific point in the file system. This point is
called your current directory, denoted by the . character.



File System Structure

I Double dots .. denotes your parent directory. It is the directory
containing your current directory, unless you are at the root of
the file system, in which case the parent directory is the root
itself.

I You can refer to a file or directory by writing its access path
either starting from root or from your currect directory. The
forward slash character / separates the directories on the path
to your target file or directory.

I Every user has a home directory. The ~ character denotes your
home directory. It is where you are put when you start a
terminal session. In general ~user denotes the home directory
of user user.



Command Line Interface (CLI)

I In a CLI, the user interacts with the computer system by typing
in commands on the keyboard, and the sytem responds by
printing out text messages on the user’s monitor (terminal).

I Compared to the Graphical User Interface (GUI), a CLI is
I harder to learn & master
I not as pretty
I more powerful, in fact, some functionality may not have a GUI

equivalent



Command Interpreter

I A shell is a command interpreter. It interprets the commands
you type in from the keyboard, executes the commands if
possible, prints out the results of execution, or prints out error
messages if it can’t execute your commands or if it encounters
any problem.

I Examples of shells are
I sh
I csh
I bash
I tcsh
I zsh

I I will assume you’ll be using the Bourne-Again Shell (bash)
since it is the default shell on the OS X machines in our lab.



bash

I bash is a programming language. It has conditionals, loops,
and functions.

I A command is either internal or external.
I All command entered interactively through the keyboard must

end in a newline character by the user’s pressing the Enter key.
I The shell understands an internal command and is able to

execute it immediately.
I If the shell does not understand a command, it assumes that it

is an external command, and will search all directories as
specified in the PATH variable for a file having that command
as name. If the file is found and is executable, the shell loads it
into memory and executes it.

I The format of a simple command is
command [flags] [arguments]
where white spaces (blanks or tabs) separate the components.



Useful Commands
I some common commands:

I ls
I cd
I mkdir
I rmdir
I rm
I mv
I cp
I cmp
I diff
I pwd
I echo
I cat
I less
I man
I info
I help



Text Files & Text Editors
I A text file is meant to be read by humans. It contains

characters that can be safely printed to the screen and printers.
It doesn’t contain formatting characters or control characters
or other binary data.

I A text editor is an app that allows the user to conveniently
read, write, modify, and save text files. It actually works on
buffers in RAM until such time when the user tells it to write
those buffers onto secondary storage.

I Examples of simple text editors are nano and TextEdit (in
plain text mode).

I Some editors are meant to be used for writing program source
code. They have features useful to programmers. Examples are
TextWrangler and Sublime Text.

I Some advanced general-purpose text editors have features that
are useful for editing all kinds of text files. Examples are
emacs and vim.



I/O Redirection

I A process is a program in execution.
I Every process are given 3 standard text streams when it starts:

I standard input
I standard output
I standard error output

I A text file is a kind of text stream so for interactive programs,
it is reasonable to redirect any of its standard I/O stream. E.g.



I/O Redirection

I The command
prog < infile

runs prog with its stardard input coming from infile,
I The command

prog > outfile

runs prog with its stardard output redirected to outfile,
I The command

prog1 | prog2

runs prog1 with its stardard output being the stardard input of
prog2.


