
Formal Languages

San Skulrattanakulchai

Feb 9, 2016

Terminology

Formal languages are our models for the data manipulated by
computers.

I A symbol (or letter) is an undefined term.
I An alphabet is a nonempty, finite set of symbols, e.g., if

Σ = {a, b} then Σ is the alphabet while a and b are symbols.
I A string (word, sentence) is a finite list of symbols chosen from

an alphabet, e.g., 〈a, b, a〉, usually written aba.

Terminology

I The length of string w , denoted |w |, is the length of the list.
I The empty string ε has length 0.
I Formal language theory allows infinite-length strings; we don’t.
I If |w | = n, we write w as w1w2 . . .wn. E.g., letting w = aba,

we have w1 = w3 = a, and w2 = b.
I For any string w and symbol a, we write |w |a to denote the

number of times the symbol a occurs in string w . E.g.,
I |aba|a = 2
I |aba|b = 1
I |aba|c = 0

I Notice how we use names (symbols) like w and a to talk about
things made up of other symbols (like a and b)? Keep them
separate in your mind!

Terminology

I The length of string w , denoted |w |, is the length of the list.
I The empty string ε has length 0.
I Formal language theory allows infinite-length strings; we don’t.
I If |w | = n, we write w as w1w2 . . .wn. E.g., letting w = aba,

we have w1 = w3 = a, and w2 = b.
I For any string w and symbol a, we write |w |a to denote the

number of times the symbol a occurs in string w . E.g.,
I |aba|a = 2
I |aba|b = 1
I |aba|c = 0

I Notice how we use names (symbols) like w and a to talk about
things made up of other symbols (like a and b)? Keep them
separate in your mind!

Terminology

I Let x = x1x2 . . . xm and y = y1y2 . . . yn be strings. The
concatenation of x and y , written xy , is the string
x1x2 . . . xmy1y2 . . . yn of length m + n that results from
appending y to the end of x , e.g., concatenating back and
bone gives backbone.

I String concatenation operation is associative, and ε is the
identity element, i.e., εw = wε = w for any string w .
∴ the set of all strings over an alphabet is a monoid under
concatenation.

Terminology

I If w is a string and n is a positive integer, we write wn to
mean the concatenation of n copies of w . The notation w0 is
defined to be ε.

I A string y is a substring (or subword) of string w if there exist
strings x , z such that w = xyz .

I A string x is a prefix of string w if there exists a string y such
that w = xy .

I A string y is a suffix of string w if there exists a string x such
that w = xy .

I By definition,
I an empty string is a substring, prefix, and suffix of any string
I any string is a substring, prefix, and suffix of itself

Terminology

I String x is a subsequence of string y if x is obtained by striking
out 0 or more symbols from y . E.g., bat is a subsequence of
habitat.

I Let w = w1w2 . . .wn be a string of length n. By the reverse of
w , notated wR , we mean the string wnwn−1 . . .w1. For
example, starR = rats.

I A string w is a palindrome if wR = w . Examples of
palindromes are eve, madam, racecar, deified, rotator.

I Given alphabet Σ, define Σ∗ to be the set of all strings over Σ.
E.g., if Σ = {a, b} then Σ∗ = {ε, a, b, aa, ab, ba, bb, aaa, . . . }.

I The listing of strings above is in shortlex order (string order,
radix order), i.e., ordered like in a dictionary, except that a
shorter string always precedes a longer one.

Exercises

I Define precisely the less than relation < for dictionary order
(lexicographic order).

I Define precisely the less than relation < for shortlex order
(string order, radix order).

I What is the position of the string ab, when the strings of
{a, b}∗ are arranged in dictionary order? in shortlex order?

Languages

I A language over the alphabet Σ is any subset of Σ∗.
I Some example languages:

1. The set of all strings with an odd number of a.
2. The set of all palindromes.
3. The set of all strings of “balanced” left and right parentheses.
4. The set of all strings with equal numbers of a, b, and c.
5. The set of all binary strings that represent prime numbers.
6. The set of all graphs with a Hamiltonian cycle, where the graph

is encoded as a string.
7. ∅ and {ε} are different languages.

Remarks

I The subject matter of this course is languages and machines
that recognize/compute them!

I Finite languages are trivial.
I A lone letter like a is ambiguous. It either represents a symbol

or a string of length 1. Context decides which meaning is
intended.

I The concepts of “string”, “concatenation”, “string length”,
“string reversal”, etc., can be defined inductively.

Language Operations

I Set Operations: ∪, ∩, \, 4, complement Ā of language A
I Concatenation: The concatenation of two languages A and B

is AB, i.e., the set of all strings xy where x ∈ A and y ∈ B.
When precision is desired, concatenation is denoted by ◦, e.g.,
x ◦ y , A ◦ B.

I Let O = {all strings of odd length}, E = {all strings of even
length}, and N = {a}. Find ON, OE, and EE.

Answer:
ON = { all strings of even length ending in a }
OE = O
EE = E

Language Operations

I Set Operations: ∪, ∩, \, 4, complement Ā of language A
I Concatenation: The concatenation of two languages A and B

is AB, i.e., the set of all strings xy where x ∈ A and y ∈ B.
When precision is desired, concatenation is denoted by ◦, e.g.,
x ◦ y , A ◦ B.

I Let O = {all strings of odd length}, E = {all strings of even
length}, and N = {a}. Find ON, OE, and EE.

Answer:
ON = { all strings of even length ending in a }
OE = O
EE = E

Language Operations

I Power: For any language A, language A0 denotes {ε};
languages Ai denotes AAi−1 whenever i > 0.

I Kleene Closure: A∗ =
⋃∞

i=0 Ai . E.g., ∅∗ = {ε}. Note how this
definition of ∗ agrees nicely with our previous definition of ∗ in
Σ∗ if we identify a string of length one with the symbol
contained in it.

I Positive Closure: A+ =
⋃∞

i=1 Ai .

Exercises

I Is it true that A+ = A∗ \ {ε} for every language A?.
I Which ones of the seven example languages satisfy A = A∗?
I Characterize languages A that satisfy A∗ = A+?
I Describe these languages: A∅, A{ε}, A ∪ ∅, A ∪ {ε}.
I The ∪ and the ◦ operators for languages are comparable to the

+ and the × operators for numbers, respectively.
I What is the identity element for ∪? for ◦?
I What rules governing + and × are also obeyed by ∪ and ◦?

