Formal Languages

San Skulrattanakulchai

Feb 9, 2016

Terminology

Formal languages are our models for the data manipulated by computers.

- A symbol (or letter) is an undefined term.
- An alphabet is a nonempty, finite set of symbols, e.g., if $\Sigma=\{a, b\}$ then Σ is the alphabet while a and b are symbols.
- A string (word, sentence) is a finite list of symbols chosen from an alphabet, e.g., $\langle\mathrm{a}, \mathrm{b}, \mathrm{a}\rangle$, usually written aba.

Terminology

- The length of string w, denoted $|w|$, is the length of the list.
- The empty string ε has length 0 .
- Formal language theory allows infinite-length strings; we don't.
- If $|w|=n$, we write w as $w_{1} w_{2} \ldots w_{n}$. E.g., letting $w=\mathrm{aba}$, we have $w_{1}=w_{3}=\mathrm{a}$, and $w_{2}=\mathrm{b}$.
- For any string w and symbol a, we write $|w|_{a}$ to denote the number of times the symbol a occurs in string w. E.g.,
- $|a b a|_{a}=2$
- $|a b a|_{b}=1$
- $|a b a|_{c}=0$

Terminology

- The length of string w, denoted $|w|$, is the length of the list.
- The empty string ε has length 0 .
- Formal language theory allows infinite-length strings; we don't.
- If $|w|=n$, we write w as $w_{1} w_{2} \ldots w_{n}$. E.g., letting $w=$ aba, we have $w_{1}=w_{3}=\mathrm{a}$, and $w_{2}=\mathrm{b}$.
- For any string w and symbol a, we write $|w|_{a}$ to denote the number of times the symbol a occurs in string w. E.g.,
- $|a b a|_{a}=2$
- $|a b a|_{b}=1$
- $|a b a|_{c}=0$
- Notice how we use names (symbols) like w and a to talk about things made up of other symbols (like a and b)? Keep them separate in your mind!

Terminology

- Let $x=x_{1} x_{2} \ldots x_{m}$ and $y=y_{1} y_{2} \ldots y_{n}$ be strings. The concatenation of x and y, written $x y$, is the string $x_{1} x_{2} \ldots x_{m} y_{1} y_{2} \ldots y_{n}$ of length $m+n$ that results from appending y to the end of x, e.g., concatenating back and bone gives backbone.
- String concatenation operation is associative, and ε is the identity element, i.e., $\varepsilon w=w \varepsilon=w$ for any string w. \therefore the set of all strings over an alphabet is a monoid under concatenation.

Terminology

- If w is a string and n is a positive integer, we write w^{n} to mean the concatenation of n copies of w. The notation w^{0} is defined to be ε.
- A string y is a substring (or subword) of string w if there exist strings x, z such that $w=x y z$.
- A string x is a prefix of string w if there exists a string y such that $w=x y$.
- A string y is a suffix of string w if there exists a string x such that $w=x y$.
- By definition,
- an empty string is a substring, prefix, and suffix of any string
- any string is a substring, prefix, and suffix of itself

Terminology

- String x is a subsequence of string y if x is obtained by striking out 0 or more symbols from y. E.g., bat is a subsequence of habitat.
- Let $w=w_{1} w_{2} \ldots w_{n}$ be a string of length n. By the reverse of w, notated w^{R}, we mean the string $w_{n} w_{n-1} \ldots w_{1}$. For example, $\operatorname{star}^{R}=$ rats.
- A string w is a palindrome if $w^{R}=w$. Examples of palindromes are eve, madam, racecar, deified, rotator.
- Given alphabet Σ, define Σ^{*} to be the set of all strings over Σ. E.g., if $\Sigma=\{a, b\}$ then $\Sigma^{*}=\{\varepsilon, a, b, a a, a b, b a, b b, a a a, \ldots\}$.
- The listing of strings above is in shortlex order (string order, radix order), i.e., ordered like in a dictionary, except that a shorter string always precedes a longer one.

Exercises

- Define precisely the less than relation < for dictionary order (lexicographic order).
- Define precisely the less than relation $<$ for shortlex order (string order, radix order).
- What is the position of the string ab, when the strings of $\{a, b\}^{*}$ are arranged in dictionary order? in shortlex order?

Languages

- A language over the alphabet Σ is any subset of Σ^{*}.
- Some example languages:

1. The set of all strings with an odd number of a.
2. The set of all palindromes.
3. The set of all strings of "balanced" left and right parentheses.
4. The set of all strings with equal numbers of a, b, and c.
5. The set of all binary strings that represent prime numbers.
6. The set of all graphs with a Hamiltonian cycle, where the graph is encoded as a string.
7. \emptyset and $\{\varepsilon\}$ are different languages.

Remarks

- The subject matter of this course is languages and machines that recognize/compute them!
- Finite languages are trivial.
- A lone letter like a is ambiguous. It either represents a symbol or a string of length 1 . Context decides which meaning is intended.
- The concepts of "string", "concatenation", "string length", "string reversal", etc., can be defined inductively.

Language Operations

- Set Operations: $\cup, \cap, \backslash, \triangle$, complement \bar{A} of language A
- Concatenation: The concatenation of two languages A and B is $A B$, i.e., the set of all strings $x y$ where $x \in A$ and $y \in B$. When precision is desired, concatenation is denoted by 0 , e.g., $x \circ y, A \circ B$.
- Let $\mathrm{O}=$ \{all strings of odd length $\}, \mathrm{E}=$ \{all strings of even length $\}$, and $N=\{a\}$. Find $O N, O E$, and $E E$.

Language Operations

- Set Operations: $\cup, \cap, \backslash, \triangle$, complement \bar{A} of language A
- Concatenation: The concatenation of two languages A and B is $A B$, i.e., the set of all strings $x y$ where $x \in A$ and $y \in B$. When precision is desired, concatenation is denoted by 0 , e.g., $x \circ y, A \circ B$.
- Let $\mathrm{O}=$ \{all strings of odd length $\}, \mathrm{E}=\{$ all strings of even length $\}$, and $N=\{a\}$. Find $O N, O E$, and $E E$.

Answer:
ON = \{ all strings of even length ending in a \}
$\mathrm{OE}=0$
$E E=E$

Language Operations

- Power. For any language A, language A^{0} denotes $\{\varepsilon\}$; languages A^{i} denotes $A A^{i-1}$ whenever $i>0$.
- Kleene Closure: $A^{*}=\bigcup_{i=0}^{\infty} A^{i}$. E.g., $\emptyset^{*}=\{\varepsilon\}$. Note how this definition of * agrees nicely with our previous definition of * in Σ^{*} if we identify a string of length one with the symbol contained in it.
- Positive Closure: $A^{+}=\bigcup_{i=1}^{\infty} A^{i}$.

Exercises

- Is it true that $A^{+}=A^{*} \backslash\{\varepsilon\}$ for every language A ?.
- Which ones of the seven example languages satisfy $A=A^{*}$?
- Characterize languages A that satisfy $A^{*}=A^{+}$?
- Describe these languages: $A \emptyset, A\{\varepsilon\}, A \cup \emptyset, A \cup\{\varepsilon\}$.
- The \cup and the o operators for languages are comparable to the + and the \times operators for numbers, respectively.
- What is the identity element for \cup ? for \circ ?
- What rules governing + and \times are also obeyed by \cup and \circ ?

