Formal Languages

San Skulrattanakulchai

Feb 9, 2016

・ロト・(型ト・(ヨト・(型ト・(ロト)))

Formal languages are our models for the data manipulated by computers.

- A symbol (or letter) is an undefined term.
- An *alphabet* is a nonempty, finite set of symbols, e.g., if
 Σ = {a, b} then Σ is the alphabet while a and b are symbols.
- A string (word, sentence) is a finite list of symbols chosen from an alphabet, e.g., (a, b, a), usually written aba.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- The length of string w, denoted |w|, is the length of the list.
- The empty string ε has length 0.
- ► Formal language theory allows infinite-length strings; we don't.
- ▶ If |w| = n, we write w as $w_1 w_2 \dots w_n$. E.g., letting w = aba, we have $w_1 = w_3 = a$, and $w_2 = b$.
- ► For any string w and symbol a, we write |w|_a to denote the number of times the symbol a occurs in string w. E.g.,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- ▶ |aba|_b = 1
- ▶ |aba|_c = 0

- The length of string w, denoted |w|, is the length of the list.
- The empty string ε has length 0.
- ► Formal language theory allows infinite-length strings; we don't.
- ▶ If |w| = n, we write w as $w_1 w_2 \dots w_n$. E.g., letting w = aba, we have $w_1 = w_3 = a$, and $w_2 = b$.
- ► For any string w and symbol a, we write |w|_a to denote the number of times the symbol a occurs in string w. E.g.,
 - ▶ |aba|_a = 2
 - ▶ |aba|_b = 1
 - ▶ |aba|_c = 0
- Notice how we use names (symbols) like w and a to talk about things made up of other symbols (like a and b)? Keep them separate in your mind!

- Let x = x₁x₂...x_m and y = y₁y₂...y_n be strings. The concatenation of x and y, written xy, is the string x₁x₂...x_my₁y₂...y_n of length m + n that results from appending y to the end of x, e.g., concatenating back and bone gives backbone.
- String concatenation operation is *associative*, and ε is the *identity element*, i.e., εw = wε = w for any string w.
 ∴ the set of all strings over an alphabet is a *monoid* under concatenation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- If w is a string and n is a positive integer, we write wⁿ to mean the concatenation of n copies of w. The notation w⁰ is defined to be ε.
- ► A string y is a substring (or subword) of string w if there exist strings x, z such that w = xyz.
- ► A string x is a prefix of string w if there exists a string y such that w = xy.
- A string y is a suffix of string w if there exists a string x such that w = xy.
- By definition,
 - an empty string is a substring, prefix, and suffix of any string
 - any string is a substring, prefix, and suffix of itself

- String x is a subsequence of string y if x is obtained by striking out 0 or more symbols from y. E.g., bat is a subsequence of habitat.
- Let w = w₁w₂...w_n be a string of length n. By the reverse of w, notated w^R, we mean the string w_nw_{n-1}...w₁. For example, star^R = rats.
- A string w is a palindrome if w^R = w. Examples of palindromes are eve, madam, racecar, deified, rotator.
- Given alphabet Σ, define Σ* to be the set of all strings over Σ.
 E.g., if Σ = {a, b} then Σ* = {ε, a, b, aa, ab, ba, bb, aaa, ... }.
- The listing of strings above is in shortlex order (string order, radix order), i.e., ordered like in a dictionary, except that a shorter string always precedes a longer one.

Exercises

- Define precisely the less than relation < for dictionary order (lexicographic order).
- Define precisely the less than relation < for shortlex order (string order, radix order).
- What is the position of the string ab, when the strings of {a, b}* are arranged in dictionary order? in shortlex order?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Languages

- A language over the alphabet Σ is any subset of Σ*.
- Some example languages:
 - 1. The set of all strings with an odd number of a.
 - 2. The set of all palindromes.
 - 3. The set of all strings of "balanced" left and right parentheses.
 - 4. The set of all strings with equal numbers of a, b, and c.
 - 5. The set of all binary strings that represent prime numbers.
 - 6. The set of all graphs with a Hamiltonian cycle, where the graph is encoded as a string.

7. \emptyset and $\{\varepsilon\}$ are different languages.

Remarks

- The subject matter of this course is languages and machines that recognize/compute them!
- Finite languages are trivial.
- A lone letter like a is ambiguous. It either represents a symbol or a string of length 1. Context decides which meaning is intended.
- The concepts of "string", "concatenation", "string length", "string reversal", etc., can be defined inductively.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Language Operations

- ▶ Set Operations: \cup , \cap , \setminus , \triangle , complement \overline{A} of language A
- Concatenation: The concatenation of two languages A and B is AB, i.e., the set of all strings xy where x ∈ A and y ∈ B.
 When precision is desired, concatenation is denoted by ∘, e.g., x ∘ y, A ∘ B.
- Let $O = \{all \text{ strings of odd length}\}$, $E = \{all \text{ strings of even length}\}$, and $N = \{a\}$. Find ON, OE, and EE.

Language Operations

- ▶ Set Operations: \cup , \cap , \setminus , \triangle , complement \overline{A} of language A
- Concatenation: The concatenation of two languages A and B is AB, i.e., the set of all strings xy where x ∈ A and y ∈ B.
 When precision is desired, concatenation is denoted by ∘, e.g., x ∘ y, A ∘ B.
- Let $O = \{all \text{ strings of odd length}\}$, $E = \{all \text{ strings of even length}\}$, and $N = \{a\}$. Find ON, OE, and EE.

Answer:

 $ON = \{ all strings of even length ending in a \}$ OE = OEE = E

Language Operations

- Power: For any language A, language A⁰ denotes {ε}; languages Aⁱ denotes AA^{i−1} whenever i > 0.
- Kleene Closure: A* = ∪_{i=0}[∞] Aⁱ. E.g., Ø* = {ε}. Note how this definition of * agrees nicely with our previous definition of * in Σ* if we identify a string of length one with the symbol contained in it.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

• Positive Closure:
$$A^+ = \bigcup_{i=1}^{\infty} A^i$$
.

Exercises

- Is it true that A⁺ = A^{*} \ {ε} for every language A?.
- Which ones of the seven example languages satisfy $A = A^*$?
- Characterize languages A that satisfy A* = A+?
- Describe these languages: $A\emptyset$, $A\{\varepsilon\}$, $A \cup \emptyset$, $A \cup \{\varepsilon\}$.
- The \cup and the \circ operators for languages are comparable to the + and the \times operators for numbers, respectively.
 - What is the identity element for \cup ? for \circ ?
 - \blacktriangleright What rules governing + and \times are also obeyed by \cup and $\circ?$