Designing Finite Automata

San Skulrattanakulchai

Feb 15, 2016



Two Design Problems

1. Given an FA, describe its language precisely.

2. Given a formal definition of a regular language, design an FA
that recognizes it.



Two Design Problems

1. Given an FA, describe its language precisely.

2. Given a formal definition of a regular language, design an FA
that recognizes it.

Solving Problem 1 is an art. No general principles are known.



Two Design Problems

1. Given an FA, describe its language precisely.

2. Given a formal definition of a regular language, design an FA
that recognizes it.
Solving Problem 1 is an art. No general principles are known.

To solve Problem 2, work with state diagrams and follow these
steps:



Two Design Problems

1. Given an FA, describe its language precisely.
2. Given a formal definition of a regular language, design an FA
that recognizes it.
Solving Problem 1 is an art. No general principles are known.
To solve Problem 2, work with state diagrams and follow these

steps:

1. Get all the machine states. Each state memorizes one unique
machine condition.



Two Design Problems

1. Given an FA, describe its language precisely.

2. Given a formal definition of a regular language, design an FA
that recognizes it.

Solving Problem 1 is an art. No general principles are known.

To solve Problem 2, work with state diagrams and follow these
steps:

1. Get all the machine states. Each state memorizes one unique
machine condition.

2. Pinpoint the accept states.



Two Design Problems

1. Given an FA, describe its language precisely.

2. Given a formal definition of a regular language, design an FA
that recognizes it.

Solving Problem 1 is an art. No general principles are known.

To solve Problem 2, work with state diagrams and follow these
steps:

1. Get all the machine states. Each state memorizes one unique
machine condition.

2. Pinpoint the accept states.

3. Draw the edges.



Exercises

Assume ¥ = { a, b }. Design machines to recognize strings that

> starts with a



Exercises

Assume ¥ = { a, b }. Design machines to recognize strings that

> starts with a

» ends with bb



Exercises

Assume ¥ = { a, b }. Design machines to recognize strings that

> starts with a
» ends with bb

» starts with a and ends with b



Exercises

Assume ¥ = { a, b }. Design machines to recognize strings that

> starts with a
» ends with bb
» starts with a and ends with b

» starts with a or ends with a



Exercises

Assume ¥ = { a, b }. Design machines to recognize strings that

> starts with a

> ends with bb

» starts with a and ends with b
» starts with a or ends with a

> if it starts with a, then it doesn't end with a



Exercises

» does not start or end with a but a occurs somewhere



Exercises

» does not start or end with a but a occurs somewhere

» contains ab



Exercises

» does not start or end with a but a occurs somewhere

» contains ab

» contains ab and ba



Exercises

does not start or end with a but a occurs somewhere

v

» contains ab

contains ab and ba

v

» contains ab or ba



Exercises

» does not start or end with a but a occurs somewhere

» contains ab

» contains ab and ba

» contains ab or ba

» contains neither aa nor bb



Exercises

» contains (at least) an a



Exercises

» contains (at least) an a

» contains exactly one a



Exercises

» contains (at least) an a
» contains exactly one a

» contains (at least) two a's



Exercises

» contains (at least) an a
» contains exactly one a
» contains (at least) two a's

» contains exactly two a's



Exercises

» contains (at least) an a

» contains exactly one a

» contains (at least) two a's
» contains exactly two a's

> negate each of the above



Remarks

» We can always get the complement of a language of a DFA
simply by exchanging the role of the accepting and the
nonaccepting states. Does this technique work for NFAs?

» The Product Construction can be used to obtain the language
of binary set operations (like union, intersection, set difference,
symmetric difference, etc) of two regular languages.



