Regular Expressions

San Skulrattanakulchai

Feb 22, 2016

(ロ)、(型)、(E)、(E)、 E) のQ(()

Sipser Chapter 1, p63-66

Given an alphabet Σ , a **regular expression over** Σ is recursively defined as follows.

- \emptyset is a regular expression.
- $\triangleright \varepsilon$ is a regular expression.
- Each $a \in \Sigma$ is a regular expression.
- ▶ If R_1 and R_2 are regular expressions, then $(R_1 \cup R_2)$ is a regular expression.
- ▶ If R_1 and R_2 are regular expressions, then $(R_1 \circ R_2)$ is a regular expression.
- If R is a regular expression, then (R^*) is a regular expression.

Something is a regular expression if and only if it follows from one of the above rules.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Sipser Chapter 1, p63-66

Given an alphabet $\Sigma,$ a regular expression over Σ is recursively defined as follows.

- \emptyset is a regular expression.
- $\triangleright \varepsilon$ is a regular expression.
- Each $a \in \Sigma$ is a regular expression.
- ▶ If R_1 and R_2 are regular expressions, then $(R_1 \cup R_2)$ is a regular expression.
- ▶ If R_1 and R_2 are regular expressions, then $(R_1 \circ R_2)$ is a regular expression.
- If R is a regular expression, then (R^*) is a regular expression.

Something is a regular expression if and only if it follows from one of the above rules.

Exercise

Show that the rule " ε is a regular expression" is superfluous.

Short-cut notation for RE's

To make regular expressions easy to write and also unambiguous, we

- ▶ use juxtaposition instead of ○
- ▶ declare that * has higher precedence than o, and that o has higher precedence than U, and omit enclosing parentheses when possible
- declare that all three operators are left-associative
- retain pairs of enclosing parentheses only when needed to override the default precedence & associativity rules

Therefore, 01^* means $(0 \circ (1^*))$, which is different from $((0 \circ 1)^*)$. Similarly, $10 \cup 01$ means $((1 \circ 0) \cup (0 \circ 1))$, which is different from $((1 \circ (0 \cup 0)) \circ 1)$ or $(1 \circ ((0 \cup 0) \circ 1))$.

Semantics of REs

We associate each R.E. R with its language L(R) as follows.

- Each $a \in \Sigma$ is associated with $\{a\}$.
- \emptyset is associated with \emptyset
- ε is associated with $\{\varepsilon\}$.
- ▶ If $L(R_1)$ is the language of R_1 and $L(R_2)$ is the language of R_2 , then $L(R_1) \cup L(R_2)$ is the language of $(R_1 \cup R_2)$.
- If L(R₁) is the language of R₁ and L(R₂) is the language of R₂, then L(R₁) ◦ L(R₂) is the language of (R₁ ◦ R₂).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

If L(R) is the language of R, then L(R)^{*} is the language of (R^{*}).

Notes

- For an R.E. R and nonnegative integer n, R⁺ is short for (R ∘ (R^{*})), and Rⁿ is short for n copies of R's concatenated (in any order!).
- ► The three operations U, o and * on languages are termed regular operations. A language representable by an R.E. is called a regular language.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・