Problems

Example Problems in \mathcal{P}.

PATH

INSTANCE: $\langle D, s, t\rangle$ where D is a digraph, s and t are distinct vertices of D.
QUESTION: Does D contain any directed s, t-dipath?

SPATH

INSTANCE: $\langle D, s, t, k\rangle$ where D is a digraph, s and t are distinct vertices, and k is a nonnegative integer.
QUESTION: Does D contain a dipath of length at most k from s to t ?

RELPRIME

INSTANCE: $\langle x, y\rangle$ where x and y are positive integers.
QUESTION: Are x and y relatively prime?

Example Problems in $\mathcal{N} \mathcal{P}$.

ANY-HAMPATH

INSTANCE: $\langle D\rangle$ where D is a digraph.
QUESTION: Does D contain a dipath that covers every vertex exactly once?

ANY-UHAMPATH

INSTANCE: $\langle G\rangle$ where G is a graph.
QUESTION: Does G contain a path that covers every vertex exactly once?

CLIQUE

INSTANCE: $\langle G, k\rangle$ where G is a graph and k is a positive integer.
QUESTION: Does G contain a subset V^{\prime} of vertices of size $\geq k$ such that any two vertices in V^{\prime} are adjacent?

DOMINATING-SET

INSTANCE: $\langle G, k\rangle$ where G is a graph and k is a positive integer.
QUESTION: Does G contain a subset V^{\prime} of vertices of size $\leq k$ such that every vertex of G is either in V^{\prime} or is adjacent to some vertex in V^{\prime} ?

DOUBLE-SAT

INSTANCE: $\langle\varphi\rangle$ where φ is a boolean formula in CNF.
QUESTION: Does φ have at least two satisfying assignments?

FEEDBACK-VERTEX-SET

INSTANCE: $\langle D, k\rangle$ where D is a digraph and k is a positive integer.
QUESTION: Is there a subset V^{\prime} of vertices of size $\leq k$ such that every dicycle in D passes through at least a vertex in V^{\prime} ?

HAMPATH

INSTANCE: $\langle D, s, t\rangle$ where D is a digraph, s and t are distinct vertices.
QUESTION: Does D contain an s, t-dipath that covers every vertex exactly once?

HAMCYCLE

INSTANCE: $\langle D\rangle$ where D is a digraph.
QUESTION: Does D contain a dicycle that covers every vertex exactly once?

INDEPENDENT-SET

INSTANCE: $\langle G, k\rangle$ where G is a graph and k is a positive integer.
QUESTION: Does G contain a subset V^{\prime} of vertices of size $\geq k$ such that no two vertices in V^{\prime} are adjacent?

LPATH

INSTANCE: $\langle D, s, t, k\rangle$ where D is a directed graph, s and t are distinct vertices, and k is a positive integer.
QUESTION: Does D contain a simple s, t-path of length $\geq k$?

SAT
INSTANCE: $\langle\varphi\rangle$ where φ is a boolean formula.
QUESTION: Is φ satisfiable?

SUBGRAPH-ISOMORPHISM

INSTANCE: $\left\langle G_{1}, G_{2}\right\rangle$ where G_{1} and G_{2} are undirected graphs.
QUESTION: Does G_{1} contain a subgraph isomorphic to G_{2} ?

SUBSET-SUM

INSTANCE: $\langle S, t\rangle$ where S is a collection (multiset) of positive integers, and t an integer. QUESTION: Does S contain a subcollection T that sums to t ?

TRAVELING-SALESPERSON-PROBLEM (TSP, undirected version)

INSTANCE: $\langle G, w, k\rangle$ where $G=(V, E)$ is a complete graph every edge e of which has an integral weight $w(e)$ associated with it, and k is an integer.
QUESTION: Does G contain a cycle covering all vertices whose sum of the edge weights in this cycle is $\leq k$?

UHAMCYCLE

INSTANCE: $\langle G\rangle$ where G is a graph.
QUESTION: Does G contain a cycle that covers every vertex exactly once?

UHAMPATH

INSTANCE: $\langle G, s, t\rangle$ where G is a graph, s and t are vertices.
QUESTION: Does G contain an s, t-path that covers every vertex exactly once?

VERTEX-COVER

INSTANCE: $\langle G, k\rangle$ where G is a graph and k is a positive integer.
QUESTION: Does G contain a subset V^{\prime} of vertices of size $\leq k$ such that every edge in G is incident to some vertex in V^{\prime} ?

