Problems

Example Problems in \mathcal{P} .

PATH

INSTANCE: $\langle D, s, t \rangle$ where D is a digraph, s and t are distinct vertices of D. QUESTION: Does D contain any directed s, t-dipath?

SPATH

INSTANCE: $\langle D, s, t, k \rangle$ where D is a digraph, s and t are distinct vertices, and k is a nonnegative integer.

QUESTION: Does D contain a dipath of length at most k from s to t?

RELPRIME

INSTANCE: $\langle x, y \rangle$ where x and y are positive integers. QUESTION: Are x and y relatively prime?

Example Problems in \mathcal{NP} .

ANY-HAMPATH

INSTANCE: $\langle D \rangle$ where D is a digraph. QUESTION: Does D contain a dipath that covers every vertex exactly once?

ANY-UHAMPATH

INSTANCE: $\langle G \rangle$ where G is a graph. QUESTION: Does G contain a path that covers every vertex exactly once?

CLIQUE

INSTANCE: $\langle G, k \rangle$ where G is a graph and k is a positive integer. QUESTION: Does G contain a subset V' of vertices of size $\geq k$ such that any two vertices in V' are adjacent?

DOMINATING-SET

INSTANCE: $\langle G, k \rangle$ where G is a graph and k is a positive integer. QUESTION: Does G contain a subset V' of vertices of size $\leq k$ such that every vertex of G is either in V' or is adjacent to some vertex in V'?

DOUBLE-SAT

INSTANCE: $\langle \varphi \rangle$ where φ is a boolean formula in CNF. QUESTION: Does φ have at least two satisfying assignments?

FEEDBACK-VERTEX-SET

INSTANCE: $\langle D, k \rangle$ where D is a digraph and k is a positive integer. QUESTION: Is there a subset V' of vertices of size $\leq k$ such that every dicycle in D passes through at least a vertex in V'?

HAMPATH

INSTANCE: $\langle D, s, t \rangle$ where D is a digraph, s and t are distinct vertices. QUESTION: Does D contain an s,t-dipath that covers every vertex exactly once?

HAMCYCLE

INSTANCE: $\langle D \rangle$ where D is a digraph. QUESTION: Does D contain a dicycle that covers every vertex exactly once?

INDEPENDENT-SET

INSTANCE: $\langle G, k \rangle$ where G is a graph and k is a positive integer. QUESTION: Does G contain a subset V' of vertices of size $\geq k$ such that no two vertices in V' are adjacent?

LPATH

INSTANCE: $\langle D, s, t, k \rangle$ where D is a directed graph, s and t are distinct vertices, and k is a positive integer.

QUESTION: Does D contain a simple s, t-path of length $\geq k$?

SAT

INSTANCE: $\langle \varphi \rangle$ where φ is a boolean formula. QUESTION: Is φ satisfiable?

SUBGRAPH-ISOMORPHISM

INSTANCE: $\langle G_1, G_2 \rangle$ where G_1 and G_2 are undirected graphs. QUESTION: Does G_1 contain a subgraph isomorphic to G_2 ?

SUBSET-SUM

INSTANCE: $\langle S, t \rangle$ where S is a collection (multiset) of positive integers, and t an integer. QUESTION: Does S contain a subcollection T that sums to t?

TRAVELING-SALESPERSON-PROBLEM (TSP, undirected version)

INSTANCE: $\langle G, w, k \rangle$ where G = (V, E) is a complete graph every edge e of which has an integral weight w(e) associated with it, and k is an integer.

QUESTION: Does G contain a cycle covering all vertices whose sum of the edge weights in this cycle is $\leq k$?

UHAMCYCLE

INSTANCE: $\langle G \rangle$ where G is a graph. QUESTION: Does G contain a cycle that covers every vertex exactly once?

UHAMPATH

INSTANCE: $\langle G, s, t \rangle$ where G is a graph, s and t are vertices. QUESTION: Does G contain an s, t-path that covers every vertex exactly once?

VERTEX-COVER

INSTANCE: $\langle G, k \rangle$ where G is a graph and k is a positive integer.

QUESTION: Does G contain a subset V' of vertices of size $\leq k$ such that every edge in G is incident to some vertex in V'?