UVa 116 - Unidirectional TSP

San Skulrattanakulchai

Mar 1, 2016

(ロ)、(型)、(E)、(E)、 E) の(()

Unidirectional TSP

Problem

Given an m x n matrix of integers, you are to write a program that computes a path of minimal weight. A path starts anywhere in column 1 (the first column) and consists of a sequence of steps terminating in column n (the last column). A step consists of traveling from column i to column i+1 in an adjacent (horizontal or diagonal) row. The first and last rows (rows 1 and m) of a matrix are considered adjacent, i.e., the matrix "wraps" so that it represents a horizontal cylinder.

The *weight* of a path is the sum of the integers in each of the n cells of the matrix that are visited.

Let A be the given $m \ge n$ matrix of integers. For all i, j where $1 \le i \le m$ and $1 \le j \le n$, define w(i, j) to be the weight of a lightest "path" starting in the cell at row i and column j and ending in some cell in column n.

A "path" is defined like in the problem statement, that is, it consists of steps, where a step consists of traveling from column i to column i+1 in an adjacent (horizontal or diagonal) row.

Recurrence

For all $1 \leq i \leq m$

where the arithmetic on i is done modulo m.

We are seeking $\min\{w(i, 1) : 1 \le i \le m\}$. Moreover, the solution has to be the lexicographically smallest.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

For this problem it is convenient to also compute a companion minimizer table. So for all $1 \le i \le m$ and $1 \le j < n$ let's define z(i,j) to be the ordered pair (i', j + 1) where i' is the the smallest index achieving the minimum in the recursive case of the definition for w.

Implementation of the Algorithm

- Step 1. Fill in the two tables w(·, ·) and z(·, ·), making sure to let the column index be decreasing. The row index can be in any order.
- Step 2. Compute min{w(i, 1) : 1 ≤ i ≤ m} and let i* be a minimizer of smallest value.
- Step 3. Output the answer starting from cell (i^{*}, 1) and using the z(·, ·) table to determine the rest of the path.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Running Time

- Step 1 takes time O(mn).
- Step 2 takes time O(m).
- Step 3 takes time O(n).

So total running time is O(mn).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ