Set Theory Review \& Recurrences

A set is a collection of distinct objects called elements or members. A set can be specified by enumerating its elements. For example, letting S_{0} be the set of fundamental atomic particles, we can write $S_{0}=$ \{neutron, proton, electron\}.

The notation $x \in S$ (reads " x belongs to S ", or " x is a member of S ") says that x is an element in the set S; the notation $x \notin S$ says that x is not an element in the set S. For example, electron $\in S_{0}$, neutrino $\notin S_{0}$.

The order that an element appears in the enumeration does not matter. Also, an element may appear more than once inside the enclosing braces. So $\{3,3,1,3\}$ is considered the same set as $\{1,3\}$.

The size or cardinality of a set S is the number of elements in S and is denoted $|S|$. For example, $\left|S_{0}\right|=3$ and $|\{3,3,1,3\}|=2$.

The empty set, denoted \emptyset, contains no element, i.e., $|\emptyset|=0$.

Set T is a subset of S, denoted $T \subseteq S$, if every member of T is also a member of S. For example, \{proton, neutron\} $\subseteq S_{0}$. Two sets S and T are equal, denoted $S=T$, if $S \subseteq T$ and $T \subseteq S$. Set T is a proper subset of S, denoted $T \subset S$, if $T \subseteq S$ and $T \neq S$. For example, $\{$ proton, neutron $\} \subset S_{0}$, and $\emptyset \subset S_{0}$.

Another way of specifying sets is by the set former notation.

For example, set S_{0} can be denoted $\{x: x$ is an elementary atomic particle $\}$, and can be read "the set of all elements x such that x is an elementary atomic particle." In general,
we can write any property of x after the colon, and for precision state from what set we are taking the general element x. For example, $\{x \in \mathbb{R}: 1 \leq x \leq 10\}$ is the set of all real numbers between 1 and 10 inclusive, i.e., the closed interval $[1,10]$, and $\{n: n$ is an even integer $\}$ is the set of all even integers.

We can even write a formula in front of the colon. For example, $\{2 n: n$ is an integer $\}$ is the set of even integers as above;
$\{d \cdot e: d$ and e are integers $>1\}$ is the set of composite numbers;
if $A[1 . .10]$ is an array, $\{A[j]: 6 \leq j \leq 10\}$ is the set containing the last 5 elements of the array.

We can list more than 1 formula in a set former. For example, $\{3 n+1,3 n+2,0: n$ is an integer $\}$ is the set of integers not divisible by 3 , plus 0 .

We combine sets with the operations \cup, \cap, \backslash, and set complement \bar{S}. For example, $\{x: x$ is an integer divisibleby 2$\} \cap\{y: y$ is an integer divisibleby 3$\}$ is $\{x: x$ is an integer divisibleby 6$\}$.

Sets S and T are disjoint if they have empty intersection, i.e., $S \cap T=\emptyset$.

Set operations for dynamic programming

In dynamic programming, the important set operations are $\bigcup, \bigcap, \min , \max , \sum, \Pi, \bigvee$, and \bigwedge.

Examples

$\min \{n: n$ is composite $\}=4$
Let $A[1 . .10]$ be an array with $A[i]=2 i$. Then
$\min \{A[i]: 5<i \leq 10\}=12$.
$\max \{A[i]: 3 \leq i \leq 6\} \cup\{i: 5<i \leq 15\}=15$.

An index i achieving the minimum value is called a minimizer. Some authors use arg min for the minimizer. Similarly for maximizer (arg max).

Recurrences

A sequence is a function defined on the positive (or nonnegative) integers. For example, the sequence $\left\langle t_{n}\right\rangle_{n=0}^{\infty}$ defined by

$$
t_{n}=2^{n} \quad \text { for all integers } n \geq 0
$$

is the sequence $\langle 1,2,4,8, \ldots\rangle$.

A sequence may be defined by a formula like t_{n} above. It can also be defined as a recurrence like the following definition for the Fibonacci Sequence $\left\langle f_{n}\right\rangle$:

$$
f_{n}= \begin{cases}n & \text { if } i=0 \text { or } 1 \\ f_{n-1}+f_{n-2} & \text { if } i>1\end{cases}
$$

Given nonnegative integer n, we can compute f_{n} like so:

```
F(n) {
    if }n<2\mathrm{ then return }
    else return F(n-1)+F(n-2)
}
```

The problem is that this recursive procedure has an exponential running time; it computes $\mathrm{F}(k)$ for those $k<n$ repeatedly. We can avoid repeated computation by using a table $F[\cdot]$ and recording the values of every $\mathrm{F}(k)$ the first time we know it. This can be done by computing $\mathrm{F}(k)$ for all $k=0,1,2, \ldots$ in that order. This iterative procedure takes $O(n)$ additions.

$$
\begin{aligned}
& \mathrm{F}(n)\{ \\
& \quad F \leftarrow \text { an empty array of length } n \\
& \quad F[0] \leftarrow 0 ; F[1] \leftarrow 1 \\
& \\
& \quad \text { for } i \leftarrow 2 \text { to } n \text { do } \\
& \\
& \quad F[i] \leftarrow F[i-1]+F[i-2] \\
& \\
& \text { return } F[n]
\end{aligned}
$$

