
MCS-375: Algorithms: Analysis and Design Handout #DP1

San Skulrattanakulchai

Gustavus Adolphus College Oct 8, 2015

Set Theory Review & Recurrences

A set is a collection of distinct objects called elements or members. A set can be specified

by enumerating its elements. For example, letting S0 be the set of fundamental atomic

particles, we can write S0 = {neutron, proton, electron}.

The notation x ∈ S (reads “x belongs to S”, or “x is a member of S”) says that x is an

element in the set S; the notation x /∈ S says that x is not an element in the set S. For

example, electron ∈ S0, neutrino /∈ S0.

The order that an element appears in the enumeration does not matter. Also, an element

may appear more than once inside the enclosing braces. So {3, 3, 1, 3} is considered the

same set as {1, 3}.

The size or cardinality of a set S is the number of elements in S and is denoted |S|. For

example, |S0| = 3 and |{3, 3, 1, 3}| = 2.

The empty set, denoted ∅, contains no element, i.e., |∅| = 0.

Set T is a subset of S, denoted T ⊆ S, if every member of T is also a member of S. For

example, {proton, neutron} ⊆ S0. Two sets S and T are equal, denoted S = T , if S ⊆ T

and T ⊆ S. Set T is a proper subset of S, denoted T ⊂ S, if T ⊆ S and T 6= S. For

example, {proton, neutron} ⊂ S0, and ∅ ⊂ S0.

Another way of specifying sets is by the set former notation.

For example, set S0 can be denoted {x : x is an elementary atomic particle}, and can be

read “the set of all elements x such that x is an elementary atomic particle.” In general,

2 MCS-375: Handout #DP1

we can write any property of x after the colon, and for precision state from what set we

are taking the general element x. For example, {x ∈ R : 1 ≤ x ≤ 10} is the set of all

real numbers between 1 and 10 inclusive, i.e., the closed interval [1, 10], and {n : n is an

even integer} is the set of all even integers.

We can even write a formula in front of the colon. For example,

{2n : n is an integer} is the set of even integers as above;

{d · e : d and e are integers > 1} is the set of composite numbers;

if A[1..10] is an array, {A[j] : 6 ≤ j ≤ 10} is the set containing the last 5 elements of the

array.

We can list more than 1 formula in a set former. For example,

{3n + 1, 3n + 2, 0 : n is an integer} is the set of integers not divisible by 3, plus 0.

We combine sets with the operations ∪, ∩, \, and set complement S. For example,

{x : x is an integer divisibleby 2} ∩ {y : y is an integer divisibleby 3} is

{x : x is an integer divisibleby 6}.

Sets S and T are disjoint if they have empty intersection, i.e., S ∩ T = ∅.

Set operations for dynamic programming

In dynamic programming, the important set operations are
⋃

,
⋂

, min, max,
∑

,
∏

,
∨

,

and
∧

.

Examples

min{n : n is composite } = 4

Let A[1..10] be an array with A[i] = 2i. Then

min{A[i] : 5 < i ≤ 10} = 12.

max{A[i] : 3 ≤ i ≤ 6} ∪ {i : 5 < i ≤ 15} = 15.

An index i achieving the minimum value is called a minimizer. Some authors use arg

min for the minimizer. Similarly for maximizer (arg max).

MCS-375: Handout #DP1 3

Recurrences

A sequence is a function defined on the positive (or nonnegative) integers. For example,

the sequence 〈tn〉∞n=0 defined by

tn = 2n for all integers n ≥ 0

is the sequence 〈1, 2, 4, 8, . . . 〉.

A sequence may be defined by a formula like tn above. It can also be defined as a

recurrence like the following definition for the Fibonacci Sequence 〈fn〉:

fn =

{
n if i = 0 or 1

fn−1 + fn−2 if i > 1.

Given nonnegative integer n, we can compute fn like so:

f(n) {
if n < 2 then return n

else return f(n− 1) + f(n− 2)

}

The problem is that this recursive procedure has an exponential running time; it computes

f(k) for those k < n repeatedly. We can avoid repeated computation by using a table

F [·] and recording the values of every f(k) the first time we know it. This can be done

by computing f(k) for all k = 0, 1, 2, . . . in that order. This iterative procedure takes

O(n) additions.

f(n) {
F ← an empty array of length n

F [0]← 0; F [1]← 1

for i← 2 to n do

F [i]← F [i− 1] + F [i− 2]

return F [n]

}

