Flight Problem

Problem

We are given n cities 1, 2, ..., n in that order, with cost c(i, j) for flying a plane from city i to city j for all $1 \le i < j \le n$. We wish to fly from city 1 to city n, stopping at any number of these intermediate cities if we wish. The cost function is arbitrary. Compute a cheapest route to fly from city 1 to city n.

Solution by Dynamic Programming

For each $1 \le i \le n$, let m(i) be the cheapest cost of flying from city 1 to city *i*.

We know that m(1) = 0 since it costs nothing to fly to from city 1 to city 1.

For each *i* such that $1 < i \leq n$, we know that the last leg of the cheapest flight from 1 to *i* goes from some city *k* to city *i*, where $1 \leq k < i$. So m(i) = m(k) + c(k, i), since we must have flown from the city 1 to city *k* as cheapest as possible. We don't know what *k* is, but it must be some value between 1 and i - 1 inclusive. So we know that $m(i) = \min\{m(k) + c(k, i) : 1 \leq k < i\}.$

Therefore, m(i) satisfies the recurrence

$$m(i) = \begin{cases} 0 & \text{if } i = 1\\ \min\{m(k) + c(k, i) : 1 \le k < i\} & \text{if } i > 1 \end{cases}$$

The following code solves the recurrence by filling a table $M[\cdot]$.

$$M[1] \leftarrow 0$$

for $i \leftarrow 2$ to n do {
 $M[i] \leftarrow \infty$
for $k \leftarrow 1$ to $i - 1$ do
 $M[i] \leftarrow \min(M[i], M[k] + C[k, i])$
}

Suppose the cost function $c(\cdot, \cdot)$ is given as the following 2d-array of numbers

	i:2	3	4	5	6	7
k:1	100	200	300	400	500	600
2		50	100	150	200	300
3			60	100	115	240
4				40	70	100
5					40	40
6						20

The filled-in table M then looks like

i	1	2	3	4	5	6	7
M[i]	0	100	150	200	240	265	280

This is Dynamic Programming, a technique for solving a problem by

- (i) developing a recurrence, and
- (ii) solving the recurrence by filling in a table.

The value of M[n] is the cheapest cost to fly from city 1 to city n.

In order to find the corresponding route, we can record the minimizers in our dynamic programming table like so:

i	1	2	3	4	5	6	7
M[i]	0	100	150	200	240	265	280
K[i]		1	2	2	4	3	5

The $K[\cdot]$ table is the minimizer table.

Since 5 is the minimizer for m(7), the cheapest way to fly to 7 is to first fly to 5 in the cheapest way, and then fly directly to 7.

Similarly, we reach 5 by flying directly from 4.

We reach 4 by flying directly from 2.

We reach 2 by flying directly from 1.

I.e, we find the cheapest route by scanning the table backwards via the K[i] "pointers."

This shows that the cheapest route costs 280 with itinerary $1 \rightarrow 2 \rightarrow 4 \rightarrow 5 \rightarrow 7$.

Question: What is curious about the cheapest way to fly to city 6?

We can print the cheapest route with a simple recursive algorithm.

```
/* print out the cheapest route from 1 to k, starting at city 1 */
STOPS(k) {
    if k = 1 then
        print 1
    else {
            STOPS(K[k])
            print k
        }
}
```

To print out the cheapest route to city n, call STOPS(n). The running time for filling out the $M[\cdot]$ and $K[\cdot]$ tables is $O(n^2)$. The running time for printing out the cheapest route is O(n).

Notes

- 1. The cost function does not have to be given as a table. It may be given as a formula, for example. We assume in this handout that given any cities i, j, the cost c(i, j) can be found in O(1) time.
- 2. Instead of making the destination city the variable, we can also make the starting city the variable.
- 3. We can solve the problem with extra conditions by either modifying the cost function, or the recurrence.
- 4. Problems admitting solutions by dynamic programming exhibit the *Optimal Sub*structure Property—embedded within an optimal solution are optimal solutions to subproblems.