Subset Sum Problem Revisited

Problem

We are given a positive integer t and a sequence $A = \langle a_1, a_2, \ldots, a_n \rangle$ of (not necessarily distinct) n positive integers. We want to find out whether some subsequence of A sums to t.

Dynamic Programming Solution

For $1 \leq i \leq n$ and $0 \leq v \leq t$, define m(i, v) to be

 $m(i,v) = \begin{cases} \texttt{true} & \text{if some subsequence of } \langle a_1, a_2, \dots, a_i \rangle \text{ sums to } v \\ \texttt{false} & \text{otherwise.} \end{cases}$

We seek m(n, t).

Optimal Substructure Property Clearly $m(i, 0) = \text{true for all } 1 \leq i \leq n$.

Now let i, v be positive integers. Suppose the sequence $\langle a_1, a_2, \ldots, a_i \rangle$ contains a subsequence $\langle a_{j_1}, a_{j_2}, \ldots, a_{j_k} \rangle$ that sums to v. Case 1: $j_k = i$. Then the sequence $\langle a_1, a_2, \ldots, a_{i-1} \rangle$ contains the subsequence $\langle a_{j_1}, a_{j_2}, \ldots, a_{j_{k-1}} \rangle$ that sums to $v - a_i$.

Case 2: $j_k \neq i$. Then the sequence $\langle a_1, a_2, \ldots, a_{i-1} \rangle$ contains the subsequence $\langle a_{j_1}, a_{j_2}, \ldots, a_{j_k} \rangle$ that sums to v.

This gives us the following recurrence.

Recurrence

$$m(i,v) = \begin{cases} \text{true} & \text{if } v = 0\\ \text{true} & \text{if } v > 0, \, i = 1, \, v = a_1\\ \text{false} & \text{if } v > 0, \, i = 1, \, v \neq a_1\\ m(i-1,v) & \text{if } v > 0, \, i > 1, \, a_i > v\\ m(i-1,v) \lor m(i-1,v-a_i) & \text{if } v > 0, \, i > 1, \, a_i \leq v \end{cases}$$

Subset Sum Algorithm

Step 1. Fill in a table of $m(\cdot, \cdot)$ values, We can fill the table row-by-row or column-bycolumn, with both the row and column indices increasing.

Step 2. Return the value m(n, t) as answer.

Running Time

Step 1 fills out each table entry in O(1) time, O(nt) time total. Step 2 takes O(1) time.

Notes

- 1. In case of positive answer, if the set of numbers that adds up to the target t is desired, we can get them from the filled-out $M[\cdot, \cdot]$ table directly without having to use an optimizer table.
- 2. Instead of asking whether some subset of A summing to t exists, we can instead ask how many subsets sum to t.
- 3. Subset Sum is an NP-complete problem. Dynamic programming solves it in *pseu*dopolynomial time.
- 4. The 0-1 Knapsack Problem is similar to the Subset Sum Problem.