Subset Sum Problem Revisited

Problem

We are given a positive integer t and a sequence $A=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ of (not necessarily distinct) n positive integers. We want to find out whether some subsequence of A sums to t.

Dynamic Programming Solution

For $1 \leq i \leq n$ and $0 \leq v \leq t$, define $m(i, v)$ to be

$$
m(i, v)= \begin{cases}\text { true } & \text { if some subsequence of }\left\langle a_{1}, a_{2}, \ldots, a_{i}\right\rangle \text { sums to } v \\ \text { false } & \text { otherwise } .\end{cases}
$$

We seek $m(n, t)$.
Optimal Substructure Property Clearly $m(i, 0)=$ true for all $1 \leq i \leq n$.
Now let i, v be positive integers. Suppose the sequence $\left\langle a_{1}, a_{2}, \ldots, a_{i}\right\rangle$ contains a subsequence $\left\langle a_{j_{1}}, a_{j_{2}}, \ldots, a_{j_{k}}\right\rangle$ that sums to v.
Case 1: $j_{k}=i$. Then the sequence $\left\langle a_{1}, a_{2}, \ldots, a_{i-1}\right\rangle$ contains the subsequence $\left\langle a_{j_{1}}, a_{j_{2}}, \ldots, a_{j_{k-1}}\right\rangle$ that sums to $v-a_{i}$.
Case 2: $j_{k} \neq i$. Then the sequence $\left\langle a_{1}, a_{2}, \ldots, a_{i-1}\right\rangle$ contains the subsequence $\left\langle a_{j_{1}}, a_{j_{2}}, \ldots, a_{j_{k}}\right\rangle$ that sums to v.

This gives us the following recurrence.

Recurrence

$$
m(i, v)= \begin{cases}\text { true } & \text { if } v=0 \\ \text { true } & \text { if } v>0, i=1, v=a_{1} \\ \text { false } & \text { if } v>0, i=1, v \neq a_{1} \\ m(i-1, v) & \text { if } v>0, i>1, a_{i}>v \\ m(i-1, v) \vee m\left(i-1, v-a_{i}\right) & \text { if } v>0, i>1, a_{i} \leq v\end{cases}
$$

Subset Sum Algorithm

Step 1. Fill in a table of $m(\cdot, \cdot)$ values, We can fill the table row-by-row or column-bycolumn, with both the row and column indices increasing.

Step 2. Return the value $m(n, t)$ as answer.

Running Time

Step 1 fills out each table entry in $O(1)$ time, $O(n t)$ time total.
Step 2 takes $O(1)$ time.

Notes

1. In case of positive answer, if the set of numbers that adds up to the target t is desired, we can get them from the filled-out $M[\cdot, \cdot]$ table directly without having to use an optimizer table.
2. Instead of asking whether some subset of A summing to t exists, we can instead ask how many subsets sum to t.
3. Subset Sum is an NP-complete problem. Dynamic programming solves it in pseudopolynomial time.
4. The 0-1 Knapsack Problem is similar to the Subset Sum Problem.
