
MCS-375: Algorithms: Analysis and Design Handout #DP3

San Skulrattanakulchai

Gustavus Adolphus College Oct 12, 2015

Subset Sum Problem Revisited

Problem

We are given a positive integer t and a sequence A = 〈a1, a2, . . . , an〉 of (not necessarily

distinct) n positive integers. We want to find out whether some subsequence of A sums

to t.

Dynamic Programming Solution

For 1 ≤ i ≤ n and 0 ≤ v ≤ t, define m(i, v) to be

m(i, v) =

{
true if some subsequence of 〈a1, a2, . . . , ai〉 sums to v

false otherwise.

We seek m(n, t).

Optimal Substructure Property Clearly m(i, 0) = true for all 1 ≤ i ≤ n.

Now let i, v be positive integers. Suppose the sequence 〈a1, a2, . . . , ai〉 contains a subse-

quence 〈aj1 , aj2 , . . . , ajk〉 that sums to v.

Case 1: jk = i. Then the sequence 〈a1, a2, . . . , ai−1〉 contains the subsequence 〈aj1 , aj2 , . . . , ajk−1
〉

that sums to v − ai.

Case 2: jk 6= i. Then the sequence 〈a1, a2, . . . , ai−1〉 contains the subsequence 〈aj1 , aj2 , . . . , ajk〉
that sums to v.

This gives us the following recurrence.

Recurrence

m(i, v) =



true if v = 0

true if v > 0, i = 1, v = a1

false if v > 0, i = 1, v 6= a1

m(i− 1, v) if v > 0, i > 1, ai > v

m(i− 1, v) ∨m(i− 1, v − ai) if v > 0, i > 1, ai ≤ v



2 MCS-375: Handout #DP3

Subset Sum Algorithm

Step 1. Fill in a table of m(·, ·) values, We can fill the table row-by-row or column-by-

column, with both the row and column indices increasing.

Step 2. Return the value m(n, t) as answer.

Running Time

Step 1 fills out each table entry in O(1) time, O(nt) time total.

Step 2 takes O(1) time.

Notes

1. In case of positive answer, if the set of numbers that adds up to the target t is

desired, we can get them from the filled-out M [·, ·] table directly without having

to use an optimizer table.

2. Instead of asking whether some subset of A summing to t exists, we can instead

ask how many subsets sum to t.

3. Subset Sum is an NP-complete problem. Dynamic programming solves it in pseu-

dopolynomial time.

4. The 0-1 Knapsack Problem is similar to the Subset Sum Problem.


