MCS-375: Algorithms: Analysis and Design Handout #DP5
San Skulrattanakulchai

Gustavus Adolphus College Oct 16, 2015

Weighted Activities Scheduling

GT: Ch 12.3
Problem

We are given n intervals (activities) numbered by the positive integers from 1 to n. Each
interval ¢ has an integral start time s;, an integral finish time f;, and a positive integral
benefit (weight) b;. Each interval (s;, f;] is open at its lower bound and closed at its
upper bound. A non-overlapping subset of the given intervals is called a schedule. An
optimum schedule is a schedule that maximizes the total benefit. We wish to find an

optimum schedule.

Example
Let intervals (0, 4], (1, 3|, (2, 4], and (3, 6] be given with corresponding benefits of 1,
2, 2, and 3 units, respectively. An optimum schedule chooses intervals (1, 3] and (3, 6],

achieving a total benefit of 243 = 5 units.

Input Format

We assume data is input as three arrays: the start times S[-], the finish times F[-], and
the benefits B[-], each of length n. For the time being, assume the finish times are in
non-decreasing order, that is, F[1] < F[2] < F[3] < --- < F[n]. For each interval i,

where 1 < i < n, define the predecessor of 7, written p; to be

pi:=max{0,7:1 < j <iand interval j does not overlap with interval 7 }.

Recurrence

Define m(i), for all 1 < i < n, to be the maximum benefit achievable by scheduling
intervals 1 through ¢ only. For convenience we set m(0) := 0.

Fix i. Consider an optimum schedule S using only intervals 1 through i. Schedule S
either includes interval ¢ or it doesn’t. If it does, then all intervals from p;+1 through i —1
cannot belong to S since all these intervals overlap with interval i, and S\ {¢} must be an

optimum schedule that achieves m(p;). If it does not, then S is also an optimum schedule



2 MCS-375: Handout #DP5

that achieves m(i — 1). One of these two cases must hold, and by definition of m(7) it
must be true that m(:) = max{m(p;) + b;, m(i — 1) }.

Therefore, m(7) satisfies the recurrence

m(i):{o if i =0,

max{m(p;) +b;, m(i—1)} if1<i<n.
Algorithm
Step 1 Sort the intervals so that the finish times are in non-decreasing order.
Step 2 Compute p; for all 1 < i < n and store these predecessor values in a table.
Step 3 Fill in the table of m(-) values, from left-to-right (i.e., from 0 to n).

Step 4 Retrieve an optimum schedule from the information stored in the m(-) table and

the predecessors table.

Running Time

Step 1 takes time O(nlogn) using an efficient sorting algorithm.
Step 2 takes time O(nlogn), e.g., by binary search.

Step 3 takes time O(n).

Step 4 takes time O(n).

Therefore, time for the whole algorithm is O(nlogn).
Notes
1. We present this problem in a general setting. It applies whenever we have one

shareable resource that can be used by only one activity at any given point in time.

The corresponding problem in GT is the Telescope Scheduling problem.

2. A special case of this problem where all the interval benefits are equal can be solved

by a greedy algorithm.



