Longest Common Subsequence

GT: Ch 12.5

The topic of this handout concerns sequences from some fixed alphabet Σ. A sequence $S=s_{1} s_{2} \ldots s_{k}$ is a subsequence of another sequence $T=t_{1} t_{2} \ldots t_{\ell}$ if there exists a strictly increasing function $\phi:\{1,2, \ldots, k\} \rightarrow\{1,2, \ldots, \ell\}$ such that $s_{i}=t_{\phi(i)}$ for all $i=1,2, \ldots, k$.
A sequence S is a common subsequence of sequences T and T^{\prime} if S is a subsequence of both T and T^{\prime}. A longest common subsequence (LCS) of sequences T and T^{\prime} is a common subsequence of T and T^{\prime} of maximum length.
Examples: grim is a subsequence of algorithm with $\phi(1)=3, \phi(2)=5, \phi(3)=6$, and $\phi(4)=9$. dicor is an LCS of dynamicprogramming and divideandconquer.

Problem

Let two sequences $X=x_{1} x_{2} \ldots x_{m}$ and $Y=y_{1} y_{2} \ldots y_{n}$ be given. We want to find an LCS of X and Y.

Dynamic Programming Solution

For $1 \leq i \leq m$ and $1 \leq j \leq n$, let $c(i, j)$ be the length of an LCS of $x_{1} x_{2} \ldots x_{i}$ and $y_{1} y_{2} \ldots y_{j}$.
We seek $c(m, n)$.

Optimal Substructure Property

Suppose $Z=z_{1} z_{2} \ldots z_{k}$ is an LCS of $x_{1} x_{2} \ldots x_{i}$ and $y_{1} y_{2} \ldots y_{j}$.
If $x_{i}=y_{j}$, then we can infer that $x_{i}=z_{k}$, and that $z_{1} z_{2} \ldots z_{k-1}$ is an LCS of $x_{1} x_{2} \ldots x_{i-1}$ and $y_{1} y_{2} \ldots y_{j-1}$.
If $x_{i} \neq y_{j}$, then $x_{i} \neq z_{k}$ or $y_{j} \neq z_{k}$. If $x_{i} \neq z_{k}$, we can show that Z is an LCS of $x_{1} x_{2} \ldots x_{i-1}$ and $y_{1} y_{2} \ldots y_{j}$. If $y_{j} \neq z_{k}$, we can show that Z is an LCS of $x_{1} x_{2} \ldots x_{i}$ and $y_{1} y_{2} \ldots y_{j-1}$.
We know that one of the above cases must occur. This gives us the following recurrence.

Recurrence

$$
c(i, j)=\left\{\begin{array}{llr}
0 & \text { if } i=0 \text { or } j=0 & \text { [base case] } \\
c(i-1, j-1)+1 & \text { if } i, j>0 \text { and } x_{i}=y_{j} & \text { [match case] } \\
\max \{c(i, j-1), c(i-1, j)\} & \text { if } i, j>0 \text { and } x_{i} \neq y_{j}[\text { [unmatch case] }
\end{array}\right.
$$

Question Explain how the artificial base case greatly helps simplify the recurrence.
Answer Without the artificial base case, we end up with this more complicated recurrence:

$$
c(i, j)= \begin{cases}0 & \text { if } i=j=1, x_{i} \neq y_{j} \\ 1 & \text { if } j \geq j=1 \text { or } i \geq j=1, x_{i}=y_{j} \\ c(i, j-1) & \text { if } i=1, j>1, x_{i} \neq y_{j} \\ c(i-1, j) & \text { if } i>1, j=1, x_{i} \neq y_{j} \\ c(i-1, j-1)+1 & \text { if } i>1, j>1, x_{i}=y_{j} \\ \max \{c(i, j-1), c(i-1, j)\} & \text { if } i>1, j>1, x_{i} \neq y_{j}\end{cases}
$$

Example dynamic programming table

		s	a	i	n	t
	0	0	0	0	0	0
s	0	1	1	1	1	1
a	0	1	2	2	2	2
t	0	1	2	2	2	3
a	0	1	2	2	2	3
n	0	1	2	2	3	3

Longest Common Subsequence Algorithm

Step 1. Fill in a table of $c(\cdot, \cdot)$ values, plus a companion table of maximizers. We can fill in the table row-by-row, column-by-column, or diagonal-by-diagonal.

Step 2. Find the LCS by following maximizer pointers, starting from $c(m, n)$.

Running Time

- Step 1 fills in each table entry in $O(1)$ time, $O(m n)$ time total.
- Step 2 follows each pointer in $O(1)$ time, $O(m+n)$ time total.

Notes

(i) If we start by comparing X and Y from their ends, we get a similar optimal substructure and a corresponding right-to-left recurrence.
(ii) This problem illustrates 2D-dynamic programming where $c(i, j)$ depends on $O(1)$ "smaller" values and the time is $O(m n)$.

