
MCS-375: Algorithms: Analysis and Design Handout #DP6

San Skulrattanakulchai

Gustavus Adolphus College Oct 16, 2015

Longest Common Subsequence

GT: Ch 12.5

The topic of this handout concerns sequences from some fixed alphabet Σ. A se-

quence S = s1s2 . . . sk is a subsequence of another sequence T = t1t2 . . . t` if there exists

a strictly increasing function φ : {1, 2, . . . , k} → {1, 2, . . . , `} such that si = tφ(i) for all

i = 1, 2, . . . , k.

A sequence S is a common subsequence of sequences T and T ′ if S is a subsequence of

both T and T ′. A longest common subsequence (LCS) of sequences T and T ′ is a common

subsequence of T and T ′ of maximum length.

Examples: grim is a subsequence of algorithm with φ(1) = 3, φ(2) = 5, φ(3) = 6, and

φ(4) = 9. dicor is an LCS of dynamicprogramming and divideandconquer.

Problem

Let two sequences X = x1x2 . . . xm and Y = y1y2 . . . yn be given. We want to find an

LCS of X and Y .

Dynamic Programming Solution

For 1 ≤ i ≤ m and 1 ≤ j ≤ n, let c(i, j) be the length of an LCS of x1x2 . . . xi and

y1y2 . . . yj.

We seek c(m,n).

Optimal Substructure Property

Suppose Z = z1z2 . . . zk is an LCS of x1x2 . . . xi and y1y2 . . . yj.

If xi = yj, then we can infer that xi = zk, and that z1z2 . . . zk−1 is an LCS of x1x2 . . . xi−1

and y1y2 . . . yj−1.

If xi 6= yj, then xi 6= zk or yj 6= zk. If xi 6= zk, we can show that Z is an LCS of

x1x2 . . . xi−1 and y1y2 . . . yj. If yj 6= zk, we can show that Z is an LCS of x1x2 . . . xi

and y1y2 . . . yj−1.

We know that one of the above cases must occur. This gives us the following recurrence.



2 MCS-375: Handout #DP6

Recurrence

c(i, j) =


0 if i = 0 or j = 0 [base case]

c(i− 1, j − 1) + 1 if i, j > 0 and xi = yj [match case]

max{ c(i, j − 1), c(i− 1, j) } if i, j > 0 and xi 6= yj[unmatch case]

Question Explain how the artificial base case greatly helps simplify the recurrence.

Answer Without the artificial base case, we end up with this more complicated recur-

rence:

c(i, j) =



0 if i = j = 1, xi 6= yj

1 if j ≥ j = 1 or i ≥ j = 1, xi = yj

c(i, j − 1) if i = 1, j > 1, xi 6= yj

c(i− 1, j) if i > 1, j = 1, xi 6= yj

c(i− 1, j − 1) + 1 if i > 1, j > 1, xi = yj

max{ c(i, j − 1), c(i− 1, j) } if i > 1, j > 1, xi 6= yj

Example dynamic programming table

s a i n t

0 0 0 0 0 0

s 0 1 1 1 1 1

a 0 1 2 2 2 2

t 0 1 2 2 2 3

a 0 1 2 2 2 3

n 0 1 2 2 3 3

Longest Common Subsequence Algorithm

Step 1. Fill in a table of c(·, ·) values, plus a companion table of maximizers. We can

fill in the table row-by-row, column-by-column, or diagonal-by-diagonal.

Step 2. Find the LCS by following maximizer pointers, starting from c(m,n).

Running Time

• Step 1 fills in each table entry in O(1) time, O(mn) time total.



MCS-375: Handout #DP6 3

• Step 2 follows each pointer in O(1) time, O(m+ n) time total.

Notes

(i) If we start by comparing X and Y from their ends, we get a similar optimal sub-

structure and a corresponding right-to-left recurrence.

(ii) This problem illustrates 2D-dynamic programming where c(i, j) depends on O(1)

“smaller” values and the time is O(mn).


