
MCS-375: Algorithms: Analysis and Design Handout #DP7

San Skulrattanakulchai

Gustavus Adolphus College Oct 19, 2015

Matrix-chain Multiplication

GT: Ch 12.1

Background

If A is a matrix of dimension p × q and B is a matrix of dimension q × r, then the

product AB is well-defined. It is, in fact, a matrix C of dimension p× r such that entry

cij =
∑q

k=1 aikbkj for all 1 ≤ i ≤ p and 1 ≤ j ≤ r.

The naive algorithm for multiplying two matrices using the above definition requires pqr

scalar multiplications.

Matrix multiplication is associative. Given a sequence of matrices any two consecutive

ones of which are compatible for multiplication, we may compute the product of the

whole sequence of matrices by repeatedly replacing any two consecutive matrices by

their product, until only one matrix remains.

We can specify this sequence of choices of multiplication by adding to the original se-

quence of matrices a pair of parentheses, for each choice of multiplication.

For example, one possible way to compute the product A1A2A3A4A5 is as follows.

Step 1 Multiply A1 by A2.

Step 2 Multiply A3 by A4.

Step 3 Multiply the result matrix from Step 2 by A5.

Step 4 Multiply the result matrix from Step 1 by the result matrix from Step 3.

This corresponds to the fully parenthesized sequence ((A1A2)((A3A4)A5)).

Note that one full parenthesization may correspond to more than one sequence of choices.

It’s clear that computing the product A1A2 · · ·An using different full parenthesizations

may require different numbers of scalar multiplications.



2 MCS-375: Handout #DP7

Problem

Given a sequence of n matrices A1, A2, . . . , An, fully parenthesize it to give the fewest

number of scalar multiplications used in computing the product A1A2 · · ·An.

Assume the dimensions of the A matrices are given in the sequence p so that, for all

1 ≤ i ≤ n, the dimension of Ai is pi−1 × pi.

Dynamic Programming Solution

For 1 ≤ i ≤ j ≤ n, define m(i, j) to be the fewest number of scalar multiplications

required to compute the product AiAi+1 · · ·Aj.

We seek m(1, n).

Optimal Substructure Property

If i = j, the product AiAi+1 · · ·Aj is simply Ai itself and it requires no scalar multipli-

cation to compute it. So, m(i, j) = 0 when i = j.

Suppose i < j. Let the very last matrix multiplication to compute the product AiAi+1 · · ·Aj

be the multiplication of the product AiAi+1 · · ·Ak by the product Ak+1Ak+2 · · ·Aj. Then

the product AiAi+1 · · ·Ak and the product Ak+1Ak+2 · · ·Aj must have been computed

using the fewest number of scalar multiplications as well.

Thus,

m(i, j) = m(i, k) + m(k + 1, j) + pi−1pkpj.

We don’t know what the value of k is, but we know that i ≤ k < j.

Recurrence

The above reasoning gives the recurrence.

m(i, j) =

{
0 if i = j

min{m(i, k) + m(k + 1, j) + pi−1pkpj : i ≤ k < j } if i < j.

MISSING PICTURE OF m(i, j) TABLE

Algorithm

Step 1. Fill in the table m(·, ·), plus a companion table of minimizers.

Step 2. Find an optimal full parenthesization by using the minimizer as a pointer to two

subproblems. Since each problem has 2 subproblems, we program this recursively.



MCS-375: Handout #DP7 3

Question Suppose we fill in the m(·, ·) table row-by-row or column-by-column. Explain

why the row index must be decreasing and the column index increasing.

Timing

We find an optimum parenthesization in time O(n3) because

(a) step 1 fills in each table entry in time O(n), in time O(n3) total, and

(b) step 2 finds each pair of matrices to multiply in time O(1), O(n) time total.

This problem illustrates 2D-dynamic programming where m(i, j) depends on O(n) smaller

values and the time is O(n3).


