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Combinatorial Game Theory
A combinatorial game has these properties:

I there are two players
I players alternate turn making a move
I the players have perfect information about the current state of

the game
I there is no chance element in the game, i.e., no card deals, no

dice or coin flips, etc
I the game has a finite number of positions (game states)
I the game always ends, i.e., it is acyclic
I the game ends when a player can’t make a move

I In a normal-play game, the player who makes the last move
wins.

I In a misère-play game, the player who makes the last move
loses.



Strategy

Playing perfectly means if a player can force a win, then she
always makes a move that allows her to force a win; and if she
cannot force a win, then she simply makes any move that is
available.

Combinatorial game theory usually tries to answer the question

Who wins the game if both players play perfectly?

In theory, we assume perfect play on both players.
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Types of combinatorial games

I In an impartial game, the set of allowable moves for each
position does not depend on which player is moving. Example
impartial games are Tic Tac Toe, Nim, Bachet’s game.

I In a partizan game, the set of allowable moves for each
position depends on who is making the move. Example
partizan games are Chess, Checkers, GO.

From now on we will talk about impartial games only.
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Theory of impartial games

Outcome Classes

I A P-position secures a win for the previous player. In other
words, it is a losing position for the player whose turn is to
move. An example P-position in a game of Nim is where
exactly two piles of stones are left and both piles have equal
number of stones.

I An N -position secures a win for the next player. An example
N -position in a game of Nim is where only one pile of stones
remains.

A terminal position is a position where no move is available.



Outcome of an Impartial Game

Theorem
An impartial game’s position is either a P-position or an
N -position.

Theorem
Suppose the positions of a finite impartial game can be partitioned
into mutually exclusive sets A and B with the properties:

I every option of a position in A is in B
I every position in B has at least one option in A

Then A is the set of P-positions and B is the set of N -positions.
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Algorithm

To find an outcome of an impartial game:

1. Draw the game tree.
2. Starting from the leaves, recursively label the vertices, using

either P or N labels, using the recursive definition of
P-position and N -position as given in the previous theorem.

Note: Every terminal position is a P-position.


