Longest Increasing Subsequence

San Skulrattanakulchai

Feb 29, 2016

Longest Increasing Subsequence

Definition

The sequence $a(i(1)), a(i(2)), \ldots, a(i(\ell))$ is an increasing subsequence of the sequence of integers $a(1), a(2), \ldots, a(n)$ if $i:[\ell] \rightarrow[n]$ is an increasing function and $a(i(j))<a(i(k))$ whenever $j<k$.

Problem

Given a sequence of distinct integers $a(1), a(2), \ldots, a(n)$, find the length of a longest increasing subsequence (LIS). For example, for the sequence 2, 3, 1, 4, the answer is 3 because 3 is the length of the LIS 2, 3, 4.

Solution by Dynamic Programming

For $1 \leq i \leq n$, define $m(i)$ to be the length of any LIS whose last term is $a(i)$.

For example, given the sequence $2,3,1,4$, we have $m(1)=1$, $m(2)=2, m(3)=1$, and $m(4)=3$.

Recurrence

For all $1 \leq i \leq n$,

$$
m(i)=\max \left\{1, m(j)+1: 1 \leq j<i \text { and } a_{j}<a_{i}\right\}
$$

We seek $\max \{m(i): 1 \leq i \leq n\}$.

Recurrence

For all $1 \leq i \leq n$,

$$
m(i)=\max \left\{1, m(j)+1: 1 \leq j<i \text { and } a_{j}<a_{i}\right\}
$$

We seek $\max \{m(i): 1 \leq i \leq n\}$.
If an actual LIS is desired, we can also store the maximizers in a table $z(\cdot)$ while we are filling in the $m(\cdot)$ table. In the last step of the algorithm we use the $z(\cdot)$ table and the input sequence a to retrieve an LIS.

