
Path-Based Depth-�rst Searchfor Strong and Biconnected ComponentsHarold N. Gabow �February 28, 2000Key words: Graph, depth-�rst search, strongly connected component, biconnected component,stack.1 IntroductionDepth-�rst search, as developed by Tarjan and co-authors, is a fundamental technique of e�cientalgorithm design for graphs [23]. This note presents depth-�rst search algorithms for two basic prob-lems, strong and biconnected components. Previous algorithms either compute auxiliary quantitiesbased on the depth-�rst search tree (e.g., LOWPOINT values) or require two passes. We presentone pass algorithms that only maintain a representation of the depth-�rst search path. This givesa simpli�ed view of depth-�rst search without sacri�cing e�ciency.In greater detail, most depth-�rst search algorithms (e.g., [23, 10, 11]) compute so-called LOW-POINT values that are de�ned in terms of the depth-�rst search tree. Because of the success of thismethod LOWPOINT values have become almost synonymous with depth-�rst search. LOWPOINTvalues are regarded as crucial in the strong and biconnected component algorithms, e.g. [14, pp. 94,514]. Tarjan's LOWPOINT method for strong components is presented in texts [1, 7, 14, 16, 17, 21].The strong component algorithm of Kosaraju and Sharir [22] is often viewed as conceptually simplerbut it requires two passes over the graph. It is presented in texts [2, 4, 6, 25]. Tarjan's LOWPOINTbiconnected component algorithm is presented in texts [1, 2, 4, 5, 7, 13, 14, 16, 17, 21, 25]. A two-pass biconnected component algorithm of Micali that avoids LOWPOINT values is sketched in [7,pp.67-68].This paper presents strong and biconnected component algorithms that are based on the depth-�rst search path. This natural approach appears to have �rst been proposed by Purdom [19] andMunro [18] for strong components. It is regarded as requiring an extra data structure for setmerging in order to be asymptotically e�cient, and hence unlikely to be e�cient in practice [23]. Wepresent linear-time implementations of this approach for both strong and biconnected components.Our implementations use only stacks and arrays as data structures. A line-by-line pseudocodecomparison of our algorithms with the tree-based algorithms of [23] shows the two approaches aresimilar in terms of lower level resource usage; performance di�erences are likely to be small or�Department of Computer Science, University of Colorado at Boulder, Boulder, CO 80309. e-mail:hal@cs.colorado.edu 1



platform-dependent. Our algorithms show that the simpler path-based view of depth-�rst searchsu�ces for these properties.One can design other path-based depth-�rst search algorithms for properties such as ear de-composition [15], st-numbering [7], topological numbering, etc. The complete version of this paper[8] includes an algorithm to �nd the bridges of an undirected graph, leading to an immediate proofof Robbins' Theorem [20]. It also includes a simple articulation points algorithm, and a previouslyunpublished strong component algorithm of Tarjan that can be interpreted as path-based.Section 2 presents our strong component algorithm and Section 3 presents the biconnectedcomponent algorithm. Appendix A proves a simple property of biconnected components. Weconclude this section with some terminology.Singleton sets are usually denoted by omitting set braces, e.g., for a set S and element x, S�xdenotes S � fxg. We assume all input graphs contain n vertices and m edges.We use the following operations to manipulate a stack S: PUSH(x; S) adds x to S at the (new)top of S. POP(S) removes the value at the top of the stack and returns that value. TOP(S) is theindex of the value at the top of the stack. Hence S[TOP(S)] is the value at the top of the stack.2 Strong ComponentsConsider a digraph G = (V;E). Two vertices are in the same strong component of G if and onlyif they are mutually reachable, i.e., there is a path from each vertex to the other. The strongcomponent graph is formed by contracting the vertices of each strong component. Equivalentlythe strong component graph is the acyclic digraph, formed by contracting vertices of G, that hasas many vertices as possible. In short we say the strong component graph is the �nest acycliccontraction of G.This characterization suggests the following high-level algorithm to �nd the strong componentgraph of G = (V;E). See Fig. 1. The algorithm maintains a graph H that is a contraction of Gwith some vertices deleted. It also maintains a path P in H. Initially H is the given graph G.If H has no vertices stop. Otherwise start a new path P by choosing a vertex v and setting P = (v).Continue by growing P as follows.To grow the path P = (v1; : : : ; vk) choose an edge (vk; w) directed from the last vertex of P anddo the following:If w =2 P , add w to P , making it the new last vertex of P . Continue growing P .If w 2 P , say w = vi, contract the cycle vi; vi+1; : : : ; vk, both in H and in P . P is now apath in the new graph H. Continue growing P .If no edge leaves vk, output vk as a vertex of the strong component graph. Delete vk fromboth H and P . If P is now nonempty continue growing P . Otherwise try to start a newpath P .It is easy to see that this algorithm forms the �nest acyclic contraction of G. (For instance if noedge leaves vk then vk is a vertex of the �nest acyclic contraction.) Thus the algorithm correctlycomputes the strong components. 2



1

2 3

4

5 6(a)

1

{2,4,5} {2,4,5}

1

6

1

2

4

5

{2,4,5}

3

1

6

(b) (c) (d) (e)Figure 1: (a) Digraph G. (b){(e) Path P (solid edges) in the �rst several steps of the algorithm.Strong component f3g is output in (d).This high-level algorithm was originally proposed by Purdom [19] and Munro [18]. The timefor an e�cient implementation is dominated by the time to keep track of the new vertices formedby contraction operations. Any data structure for disjoint set merging [6] can be used for thispurpose. [19] and [18] use simple set-merging data structures, achieving total time O(n2) andO(m + n log n) respectively. Tarjan has shown set merging can be more e�ciently, giving totaltime O(m�(m;n) + n) [24]. In fact the incremental tree set merging algorithm of [9] can be used.This reduces the time to O(m + n), giving a linear time algorithm to �nd strong components.However the overhead of using incremental tree set merging may be signi�cant in practice. Alsothe incremental tree algorithm requires a RAM machine and does not apply to a pointer machine.Now we give a simple list-based implementation that achieves linear time. The data structure isillustrated in Fig. 2.Assume the vertices of the given graph G are numbered by consecutive integers from 1 to n.The algorithm numbers the strong components of G by consecutive integers starting at n + 1. Itrecords the strong component number for each vertex (see (2) below).Two stacks are used to represent the path P . Stack S contains the sequence of (original) verticesin P and stack B contains the boundaries between contracted vertices. More speci�cally S and Bcorrespond to P = (v1; : : : ; vk) where k = TOP(B) and for i = 1; : : : ; k,vi = fS[j] : B[i] � j < B[i+ 1]g:(1)When k > 0 we have B[1] = 1. Also when i = k in (1) we interpret B[k + 1] to be TOP(S) + 1.An array I[1::n] is used to store stack indices. It also stores the strong component number of avertex when that number is known. More precisely for a given vertex v at any point in time,I[v] = 8><>: 0 if v has never been in P ;j if v is currently in P and S[j] = v;c if the strong component containing v has been deleted and numbered as c.(2)Since there are only n vertices, there can be no confusion between an index j and a componentnumber c in (2). A variable c is used to keep track of the component numbers.3



2

1

4

5

2

1

4

5

2

1

4

5

6

3

2

1

4

5

6

SB I

(a) (b) (c) (d)Figure 2: (a){(d) show the data structure for Fig. 1(b){(e) respectively. Stack S is shown. Arrowsto the left of S represent stack B. Arrows to the right of S represent the entries of I that are usedin contract steps. E.g. in (a) the algorithm reads I[2] = 2 and then contracts cycle 2; 4; 5 to get(b). In (c) I[3] changes from 6 to 7, the latter being the strong component number of vertex 3.The algorithm consists of a main routine STRONG and a recursive procedure DFS:procedure STRONG(G)1. empty stacks S and B;2. for v 2 V do I[v] = 0;3. c = n;4. for v 2 V do if I[v] = 0 then DFS(v);procedure DFS(v)1. PUSH(v; S); I[v] = TOP(S); PUSH(I[v]; B); =� add v to the end of P �=2. for edges (v; w) 2 E do3. if I[w] = 0 then DFS(w)4. else =� contract if necessary �= while I[w] < B[TOP(B)] do POP(B);5. if I[v] = B[TOP(B)] then f =� number vertices of the next strong component �=6. POP(B); increase c by 1;7. while I[v] � TOP(S) do I[POP(S)] = c g;Theorem 2.1 When STRONG(G) halts each vertex v 2 V belongs to the strong component numberedI[v]. The time and space are both O(m+ n).Proof: We will prove the �rst assertion of the theorem by showing that STRONG is a valid imple-mentation of the high-level algorithm. We begin by specifying how the high-level algorithm willchoose the edge (vk; w) to grow P . Say that a vertex w 2 V becomes active (alternatively, getsactivated) when it gets added to P as the new last vertex. The most active vertex is the currentlyactive vertex that was activated most recently. To choose the next edge (vk; w) let v be the mostactive vertex. Choose a previously unchosen edge directed from v, and use the corresponding edgeof H as (vk; w). If all edges directed from v have been chosen then deactivate v. If this makes allvertices of vk inactive then output vk as the next strong component.4



We must verify that this strategy correctly implements the high-level algorithm. This is easilydone by verifying that v is a vertex of vk, i.e., the most active vertex always belongs to the lastvertex of P .Now we prove that STRONG implements this version of the high-level algorithm. We assume thatH, P and the deleted strong components are as speci�ed by (1){(2). The argument is by inductionon the number of statements executed in STRONG. We will mention some points about the variousstatements and leave the remaining straightforward details of the induction to the reader. We referto lines of pseudocode by the initial of the procedure name followed by the line number e.g., D7 isthe last line of DFS.When S4 is being executed, P is empty. (By convention the execution of a line or a statementexcludes the execution of any recursive call.) During the execution of the loop of D2, v is the mostactive vertex.In D3 if 0 < I[w] � n then D4 contracts a cycle or does nothing if (v; w) has already beencontracted. If I[w] > n then the component containing w has been deleted and D4 does nothing.We turn to showing that the time and space are O(m + n). We assume the given graph G isstored as a collection of adjacency lists. Observe that every vertex is pushed onto and popped fromeach stack S, B exactly once. Hence it is easy to see that the algorithm spends O(1) time on eachvertex or edge. 2Comparing our code to the algorithm of [23], both methods use stack S; our size n array Icorresponds to a similar array that holds depth-�rst discovery numbers; our stack B correspondsto a size n array that holds LOWLINK values. Both S and B contain at most n entries at anytime.An algorithm almost identical to STRONG �nds the bridges of an undirected graph. The high-level algorithm is based on the fact that contracting the vertices of a cycle does not change thebridges of a graph. The details are given in [8].3 Biconnected ComponentsWe present our algorithm for biconnected components in the language of hypergraphs. This is notlogically necessary but it brings out the similarity to the strong components algorithm.We start by reviewing basic de�nitions about hypergraphs [3, 15]. A hypergraph H = (V;E)consists of a �nite set V of vertices and a �nite set E of edges, each edge a subset of V . A path is asequence (v1; e1; : : : ; vk; ek) of distinct vertices vi and distinct edges ei, 1 � i � k, with v1 2 e1 andvi 2 ei�1 \ ei for every 1 < i � k. The set of all vertices in edges of P is denoted V (P ) = Ski=1 ei.A cycle is a path with the additional properties that k > 1 and v1 2 ek. A hypergraph is acyclic ifit contains no cycle.Notice that in a path P each vertex vi+1, 1 � i < k belongs to ei � vi. For this reason thesets ei � vi �gure prominently in our algorithm (e.g. see (4) below). The algorithm also uses thisoperation on hypergraphs: To merge a collection of edges ei, i = 1; : : : ; k, add a new edge Ski=1 eiand delete every edge of E contained in it (e.g., ei). A merging of hypergraph H is a hypergraphformed by doing zero or more merges on H. 5



1

2 3

64

7

5

(a)

1

2

4

5

3

6

1

7

2

5

1

2

5

1

6

5

2

3 34 4 4

7

3

(b) (c) (d) (e)Figure 3: (a) Undirected graph G. (b){(e) Path P (solid edges) in the �rst several steps of thealgorithm. Biconnected component f5; 6; 7g is output in (e).Now consider an undirected graph G = (V;E). Two distinct edges are in the same biconnectedcomponent of G if and only if some simple cycle contains both of them. This relation is easilyseen to be an equivalence relation over the edges, so the biconnected components are well-de�ned.The \block-cutpoint tree" of a graph represents the biconnected components and cutpoints [12].We will use a hypergraph variant of this notion: The block hypergraph H of G is the hypergraphformed by merging the edges of each biconnected component of G. H is an acyclic hypergraph.In fact H can be characterized as the �nest acyclic merging of G, i.e., it is the acyclic hypergraphformed by merging edges of G that has as many hyperedges as possible. For completeness thischaracterization is proved in Appendix A.The characterization suggests the following high-level algorithm to �nd the block hypergraphof G = (V;E). See Fig. 3. The algorithm maintains a hypergraph H that is a merging of G withsome edges deleted, and a path P in H. Initially H is the given graph G.If H has no edges stop. Otherwise start a new path P by choosing an edge fv; wg and settingP = (v; fv; wg) (choose the end v arbitrarily). Continue by growing P as follows.To grow the path P = (v1; e1; : : : ; vk; ek) choose an edge fv; wg 6= ek with v 2 ek � vk and do thefollowing:If w =2 V (P ), add v; fv; wg to the end of P . Continue growing P .If w 2 V (P ), say w 2 ei�vi+1, merge the edges of the cycle w; ei; vi+1; ei+1; : : : ; vk; ek; v; fv; wgto a new edge e = Skj=i ej , both in H and in P . P is now a path ending with e (i.e., (vi; e)has replaced (vi; ei; : : : ; vk; ek)). Continue growing P .If no edge leaves ek � vk, output ek as an edge of the block hypergraph. Delete ek from Hand delete (vk; ek) from P . If P is now nonempty continue growing P . Otherwise try tostart a new path P .Correctness of this algorithm is based on two simple observations: When v; fv; wg is added toP the result is a valid path, by the condition v 2 ek � vk. When edges are merged they form a6



4

SB I

2

1

5

3

4

2

1

5

3

4

2

1

5

3

4

6

7

2

1

5

3

6

7(a) (b) (c) (d)Figure 4: (a){(d) illustrate the data structure for Fig. 3(b){(e) respectively. S, B and I arerepresented as in Fig. 2. Every other arrowhead of B is drawn �lled. E.g. in (a) the algorithmreads I[2] = 2 and then merges cycle 2; 3; 5; 4 to get (b). In (d) I[6] and I[7] change to 8, thenumber of the �rst biconnected component.valid cycle, by the condition fv; wg 6= ek. Now a straightforward inductive argument proves thealgorithm correctly forms the �nest acyclic merging of G, i.e., it �nds the block hypergraph asdesired.As in Section 2 we give a list-based implementation that achieves linear time. The data structureis illustrated in Fig. 4. As before assume the vertices of G are numbered by consecutive integersfrom 1 to n. The algorithm numbers the biconnected components of G by consecutive integersstarting at n+1. The biconnected components are represented by assigning a number I[v] to eachvertex v in such a way that each edge fv; wg belongs to the biconnected component with numberminfI[v]; I[w]g (see (5) below).Two stacks are used to represent the path P . Stack S contains the vertices V (P ) and stack Brepresents the boundaries between edges of P , two vertices per boundary. More speci�cally S andB correspond to P = (v1; e1; : : : ; vk; ek), where TOP(B) = 2k and for i = 1; : : : ; k,vi = S[B[2i� 1]];(3) ei � vi = fS[j] : B[2i] � j < B[2i+ 2]g:(4)Thus in Fig. 4 the open arrows of B point to the vertices vi of P . The �lled arrows demarcate thesets ei � vi; these sets are the \non�rst" vertices of edges ei of P . When P is nonempty we haveB[i] = i for i = 1; 2. Also when i = k in (4) we interpret B[2k + 2] to be TOP(S) + 1.As in the strong components algorithm an array I stores stack indices as well as biconnectedcomponent numbers. More precisely for a given vertex v at any point in time,I[v] = 8>>><>>>: 0 if v has never been in P ;j if v is currently in P and S[j] = v;c if the last biconnected component containing v has been outputand numbered as c.(5)As before there can be no confusion between an index j and a component number c in (5). Avariable c is used to keep track of the component numbers.7



The algorithm consists of a main routine BICONN and a recursive procedure DFS:procedure BICONN(G)1. empty stacks S and B;2. for v 2 V do I[v] = 0;3. c = n;4. for v 2 V do if I[v] = 0 and v is not isolated then DFS(v);procedure DFS(v)1. PUSH(v; S); I[v] = TOP(S); if I[v] > 1 then PUSH(I[v]; B); =� create a �lled arrow on B �=2. for edges fv; wg 2 E do3. if I[w] = 0 then f PUSH(I[v]; B); DFS(w) =� create an open arrow on B �= g4. else =� possible merge �= while I[v] > 1 and I[w] < B[TOP(B)�1] do fPOP(B); POP(B)g;5. if I[v] = 1 then I[POP(S)] = c6. else if I[v] = B[TOP(B)] then f7. POP(B); POP(B); increase c by 1;8. while I[v] � TOP(S) do I[POP(S)] = c g;In many situations line B4 can be simpli�ed: If G is known to be a connected graph B4 can bereplaced by a single call DFS(v) (for any vertex v). If G has no isolated vertices, i.e., every vertexis on at least one edge, the second part of the if test of B4 can be dropped. Also moving the codefor DFS for the case I[v] = 1 into B4 allows DFS itself to be simpli�ed.Theorem 3.1 When BICONN(G) halts any edge fv; wg 2 E belongs to the biconnected componentnumbered minfI[v]; I[w]g. The time and space are both O(m+ n).Proof: The argument is similar to Theorem 2.1 and uses the conventions introduced in that proof.We prove the �rst assertion of the theorem by showing that BICONN is a valid implementation ofthe high-level algorithm.We �rst specify how the high-level algorithm chooses the pair v; fv; wg to grow P . Say a vertexw 2 V becomes active the �rst time it gets added to P . As before the most active vertex is thecurrently active vertex that was activated most recently. To choose v; fv; wg, let v be the mostactive vertex. Choose a previously unchosen edge fv; wg. If all edges incident to v have been chosenthen deactivate v. If P is nonempty and this makes all vertices of ek � vk inactive then output ekas the next edge of the block hypergraph.Note that it is possible to have P empty and a vertex v active. This can occur if v was theprevious �rst vertex of P . In this case the above strategy starts a new path P = (v; fv; wg) byadding an edge incident to v. On the other hand it is possible to have P empty and no vertex vactive. In this case when a new path P = (v; fv; wg) is started, by convention v becomes activebefore w. This convention ensures that the most active vertex is always unique.This strategy correctly implements the high-level algorithm. To prove this we need only checkthat when P is nonempty v 2 ek � vk, for v the most active vertex.8



We will use another property of the implementation: When it chooses the pair v; fv; wg to growP , if w 2 V (P ) � ek then w is currently active. To show this note that w 2 V (P ) implies w hasbeen activated. Also w =2 ek implies w; fw; vg has not been chosen to grow P (since after an edgeis chosen, its ends belong to a common edge of P ). This implies w is still active.Now we prove that BICONN implements the above version of the high-level algorithm. We assumethat H, P and the deleted biconnected components are as speci�ed by (3){(5). The argument is byinduction on the number of statements executed in BICONN. We only mention the most importantpoints about the various statements, leaving the remaining details of the induction to the reader.When B4 is being executed, P is empty. During the execution of the loop of D2, v is the mostactive vertex. (Note that if I[v] = 1 then P is empty during the execution of D2. In this case wealso have TOP(S) = 1 and TOP(B) = 0.)In D3 suppose I[w] > n. Then the last biconnected component containing w has been deletedand D4 does nothing. Suppose 0 < I[w] � n. If w 2 ek then I[w] � I[vk] = B[2k � 1] (by (3)) soD4 does nothing. In the remaining case choose index i so w 2 ei � vi+1, 1 � i < k. As noted forthe high-level algorithm, w is an active vertex in V (P ). Our choice rule implies vi+1 is the mostrecently activated vertex of ei that is still active. Thus I[vi+1] > I[w] � I[vi]. Equivalently by (3),B[2i+ 1] > I[w] � B[2i� 1]. This shows D4 merges the same cycle as the high-level algorithm.The test of D6 checks whether or not the last edge ek of P consists of v and its successors on S,plus vertex vk. Hence D8 labels vertices according to (5).For the time and space bounds observe that every nonisolated vertex is pushed onto S exactlyonce. It is also pushed onto an even entry of B at most once. Hence it is easy to see that thealgorithm spends O(1) time on each vertex or edge. 2Comparing our code to the algorithm of [23], our stack S (which has at most n entries) cor-responds to a stack of edges (which has at most m entries). Our size n array I corresponds to asimilar array that holds depth-�rst discovery numbers. Our stack B (which has at most 2n entries)corresponds to a size n array that holds LOWPT values.AcknowledgmentsWe thank San Skulrattanakulchai for helpful suggestions.Appendix A Characterization of the Block HypergraphLemma A.1 The block hypergraph of a graph G is the �nest acyclic merging of G.Proof: We �rst show the block hypergraph H is acyclic. A biconnected component of G is aconnected subgraph of G. Hence a cycle in H gives a cycle in G that contains edges from at leasttwo distinct biconnected components. This is impossible.To show H is the �nest acyclic merging let K be an acyclic merging of G. Any cycle of G is con-tained entirely in one edge of K. Thus any biconnected component is contained in one edge of K. 29



References[1] A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design and Analysis of Computer Algorithms,Addison-Wesley, Reading MA, 1974.[2] A.V. Aho, J.E. Hopcroft and J.D. Ullman, Data Structures and Algorithms, Addison-Wesley,Reading MA, 1983.[3] C. Berge, Hypergraphs: Combinatorics of Finite Sets, North-Holland, NY, 1989.[4] G. Brassard and P. Bratley, Algorithmics: Theory & Practice, Prentice-Hall, Englewood Cli�sNJ, 1988.[5] G. Brassard and P. Bratley, Fundamentals of Algorithmics, Prentice-Hall, Englewood Cli�sNJ, 1996.[6] T.H. Cormen, C.E. Leiserson and R.L. Rivest, Introduction to Algorithms, McGraw-Hill, NY,1990.[7] S. Even, Graph Algorithms, Computer Science Press, Potomac, MD, 1979.[8] H.N. Gabow, Path-based depth-�rst search for strong and biconnected components, Tech.Rept. CU-CS-890-99, revised version, Dept. of Computer Science, University of Colorado atBoulder, 2000.[9] H.N. Gabow and R.E. Tarjan, \A linear-time algorithm for a special case of disjoint set union,"J. Comp. and System Sci., 30, 2, 1985, pp. 209{221.[10] J.E. Hopcroft and R.E. Tarjan, \Dividing a graph into triconnected components," SIAM J.Comput., 2, 1973, pp. 135{158.[11] J.E. Hopcroft and R.E. Tarjan, \E�cient planarity testing," J. ACM, 21, 4, 1974, pp. 549{568.[12] F. Harary, Graph Theory, Addison-Wesley, Reading MA, 1969.[13] E. Horowitz, S. Sahni, S. Rajasekaran, Computer Algorithms, Computer-Science Press, NY,1998.[14] D.E. Knuth, The Stanford Graphbase: A Platform for Combinatorial Computing, Addison-Wesley, Reading MA, 1993.[15] L. Lov�asz, Combinatorial Problems and Exercises, 2nd Edition, North-Holland, NY, 1993.[16] U. Manber, Introduction to Algorithms: A Creative Approach, Addison-Wesley, Reading MA,1989.[17] K. Melhorn, Data Structures and Algorithms 2: Graph Algorithms and NP-Completeness,Springer-Verlag, NY, 1984. 10



[18] I. Munro, E�cient determination of the strongly connected components and transitive closureof a directed graph, Department of Computer Science, University of Toronto, 1971.[19] P.W. Purdom, A transitive closure algorithm, Tech. Rept. 33, Computer Sciences Department,University of Wisconsin, Madison, 1968.[20] H.E. Robbins, \A theorem on graphs with an application to a problem of tra�c control,"American Math. Monthly, 46, 1939, pp. 281{283.[21] R. Sedgewick, Algorithms in C, Addison-Wesley, Reading MA, 1990.[22] M. Sharir, \A strong-connectivity algorithm and its application in data ow analysis," Com-puters and Mathematics with Applications 7, 1, 1981, pp. 67{72.[23] R.E. Tarjan, \Depth-�rst search and linear graph algorithms," SIAM J. Comput., 1, 2, 1972,pp. 146{160.[24] R.E. Tarjan, \E�ciency of a good but not linear set union algorithm," J. ACM, 22, 2, 1975,pp. 215{225.[25] M.A. Weiss, Data Structures and Algorithm Analysis in C++, Addison-Wesley, Reading MA,1999.

11


