
MCS-375: Algorithms: Analysis and Design Handout #DC5

San Skulrattanakulchai

Gustavus Adolphus College December 13, 2018

Mergesort

DPV Ch 2.3

Let L be a given list of length n. We wish to analyze the running time of the recursive

procedure mergesort(L) that calls the procedure merge(·, ·) as a subroutine.

/* sort input list L and return the sorted list */

mergesort(L) {

if n = 1 then return L /* base case */

else {

A← any ⌊n/2⌋ elements of L /* divide */

B ← the remaining ⌈n/2⌉ elements of L

SA ← mergesort(A) /* recurse */

SB ← mergesort(B)

return merge(SA, SB) /* combine */

}

}

/* merge the sorted lists S1 and S1 and return the merged list */

merge(S1, S2) {

S ← empty list

while both S1 and S2 are not empty do {

s1 ← front element of S1

s2 ← front element of S2

if s1 < s2 then remove s1 from S1 and add it to the end of S

else remove s2 from S2 and add it to the end of S

}

if S1 is empty then append S2 to S

if S2 is empty then append S1 to S

return S

}

2 MCS-375: Handout #DC5

Let T (n) denote the worst-case running time of mergesort(L). We give two methods

for asymptotically upper-bounding T (n).

1. Iteration method. We first assume n = 2k for some integer k. (We may assume)

T (n) satisfies

T (n) =

{

1 if n = 1

n+ 2T (n/2) if n > 1.

We iterate the recurrence to get

T (n) = n+ 2T (n/2)

= n+ 2(n/2) + 4T (n/4)

= n+ 2(n/2) + 4(n/4) + · · ·+ 2iT (n/2i)

= n+ 2(n/2) + 4(n/4) + · · ·+ 2i(n/2i) + · · ·+ 2k(n/2k) [T (n/2k) = T (1) = 1]

= n(1 + k)

= n(1 + log n).

Thus, T (n) = O(n log n) for all n that’s a power of 2.

Now let n be an arbitrary positive integer. Let p = 2⌈log n⌉. We have T (n) ≤ T (p) =

p(1 + log p) ≤ 2n(1 + log 2n).

Therefore, T (n) = O(n log n) in general.

The above analysis is correct for a “simple algorithm” where we make n a power of 2

by padding with dummy numbers.

2. Recursion tree analysis. Any recursive algorithm has a recursion tree where the

root represents the initial call, and the children of any node represent its recursive calls.

Let n be an arbitrary positive integer. Consider the recursion tree for mergesort.

Each node has an associated input list length. For example,

7

3 4

1 2 2 2

1 1 1 1 1 1

MCS-375: Handout #DC5 3

Recursion tree analysis relates the time of an algorithm to its recursion tree. For

mergesort, we reason as follows.

(i) The time per level is O(n) since each node spends O(1) time on each element in

its list (in the merge step), and any given element is in no more than 1 node at each

level.

(ii) The number of levels is ≤ ⌈log n⌉+ 1.

(i) & (ii) imply the total time for mergesort is O(n log n).

Remarks.

1. In practice, we implement mergesort as an iterative algorithm: merge lists of

length 1, 2, 4, This corresponds to a bottom-up traversal of the recursion tree.

2. In the analysis of a divide-and-conquer algorithm, we usually ignore the time needed

to set/clean up the recursive procedures. This is justifiable when this time is dominated

by the time required for combining the solutions to subproblems.

