
First Look at ML

San Skulrattanakulchai

Feb 22, 2018

ML Features

▶ The first ML compiler was built in 1974.

▶ The dialect of ML we will be studying is called Standard ML
(SML), defined in 1997.

▶ SML is a high-level language. It has “automatic garbage
collection.” It supports functional programming. It provides
mutable variables and arrays for fast execution. It also
provides modules for structuring large systems.

▶ ML protects the programmers from their own errors. The
compiler checks every program to make sure it’s type safe.
An ML program cannot crash! It may quit and report errors
but it cannot crash.

ML Features

▶ The first ML compiler was built in 1974.
▶ The dialect of ML we will be studying is called Standard ML

(SML), defined in 1997.

▶ SML is a high-level language. It has “automatic garbage
collection.” It supports functional programming. It provides
mutable variables and arrays for fast execution. It also
provides modules for structuring large systems.

▶ ML protects the programmers from their own errors. The
compiler checks every program to make sure it’s type safe.
An ML program cannot crash! It may quit and report errors
but it cannot crash.

ML Features

▶ The first ML compiler was built in 1974.
▶ The dialect of ML we will be studying is called Standard ML

(SML), defined in 1997.
▶ SML is a high-level language. It has “automatic garbage

collection.” It supports functional programming. It provides
mutable variables and arrays for fast execution. It also
provides modules for structuring large systems.

▶ ML protects the programmers from their own errors. The
compiler checks every program to make sure it’s type safe.
An ML program cannot crash! It may quit and report errors
but it cannot crash.

ML Features

▶ The first ML compiler was built in 1974.
▶ The dialect of ML we will be studying is called Standard ML

(SML), defined in 1997.
▶ SML is a high-level language. It has “automatic garbage

collection.” It supports functional programming. It provides
mutable variables and arrays for fast execution. It also
provides modules for structuring large systems.

▶ ML protects the programmers from their own errors. The
compiler checks every program to make sure it’s type safe.
An ML program cannot crash! It may quit and report errors
but it cannot crash.

Imperative vs Functional

▶ An imperative language like Fortran or C centers around
“commands” while a functional programming languge like ML
centers around “expressions.”

▶ A command has side effects. In fact, an imperative language
relies heavily on the side effect of changing the values of
memory locations.

▶ On the other hand, a functional language works with
“expressions” that can be reasoned with using mathematics.

▶ It has the property of “referential transparency,” meaning that
equals can be substituted for equals without changing the
meaning of the expression.

Imperative vs Functional

▶ An imperative language like Fortran or C centers around
“commands” while a functional programming languge like ML
centers around “expressions.”

▶ A command has side effects. In fact, an imperative language
relies heavily on the side effect of changing the values of
memory locations.

▶ On the other hand, a functional language works with
“expressions” that can be reasoned with using mathematics.

▶ It has the property of “referential transparency,” meaning that
equals can be substituted for equals without changing the
meaning of the expression.

Imperative vs Functional

▶ An imperative language like Fortran or C centers around
“commands” while a functional programming languge like ML
centers around “expressions.”

▶ A command has side effects. In fact, an imperative language
relies heavily on the side effect of changing the values of
memory locations.

▶ On the other hand, a functional language works with
“expressions” that can be reasoned with using mathematics.

▶ It has the property of “referential transparency,” meaning that
equals can be substituted for equals without changing the
meaning of the expression.

Imperative vs Functional

▶ An imperative language like Fortran or C centers around
“commands” while a functional programming languge like ML
centers around “expressions.”

▶ A command has side effects. In fact, an imperative language
relies heavily on the side effect of changing the values of
memory locations.

▶ On the other hand, a functional language works with
“expressions” that can be reasoned with using mathematics.

▶ It has the property of “referential transparency,” meaning that
equals can be substituted for equals without changing the
meaning of the expression.

Working from the command line

▶ We’ll be using Standard ML of New Jersey (SMLNJ).

▶ Add line

export PATH=/opt/local/bin/:$PATH

in your ~/.bash_profile file.
▶ Logout, then relogin to the shell. Type

rlwrap sml

▶ Explain about prompt. Type in something like 3 * 4 without
; Explain secondary prompt. Explain the output, it, and
“type annotation.”

Working from the command line

▶ We’ll be using Standard ML of New Jersey (SMLNJ).
▶ Add line

export PATH=/opt/local/bin/:$PATH

in your ~/.bash_profile file.

▶ Logout, then relogin to the shell. Type

rlwrap sml

▶ Explain about prompt. Type in something like 3 * 4 without
; Explain secondary prompt. Explain the output, it, and
“type annotation.”

Working from the command line

▶ We’ll be using Standard ML of New Jersey (SMLNJ).
▶ Add line

export PATH=/opt/local/bin/:$PATH

in your ~/.bash_profile file.
▶ Logout, then relogin to the shell. Type

rlwrap sml

▶ Explain about prompt. Type in something like 3 * 4 without
; Explain secondary prompt. Explain the output, it, and
“type annotation.”

Working from the command line

▶ We’ll be using Standard ML of New Jersey (SMLNJ).
▶ Add line

export PATH=/opt/local/bin/:$PATH

in your ~/.bash_profile file.
▶ Logout, then relogin to the shell. Type

rlwrap sml

▶ Explain about prompt. Type in something like 3 * 4 without
; Explain secondary prompt. Explain the output, it, and
“type annotation.”

Constants (Literals)

▶ int: 3, 4, ~4

▶ real: 4.57, 1.5e-9
▶ bool: true, false

(names in ML are case-sentitive, True, False not the same as
true, false)

▶ string:

▶ "metalanguage",
▶ "hello\nworld",
▶ "\t1\t2\t3",
▶ "double \"quote\" ok"

▶ char: #"a"

Constants (Literals)

▶ int: 3, 4, ~4
▶ real: 4.57, 1.5e-9

▶ bool: true, false
(names in ML are case-sentitive, True, False not the same as
true, false)

▶ string:

▶ "metalanguage",
▶ "hello\nworld",
▶ "\t1\t2\t3",
▶ "double \"quote\" ok"

▶ char: #"a"

Constants (Literals)

▶ int: 3, 4, ~4
▶ real: 4.57, 1.5e-9
▶ bool: true, false

(names in ML are case-sentitive, True, False not the same as
true, false)

▶ string:

▶ "metalanguage",
▶ "hello\nworld",
▶ "\t1\t2\t3",
▶ "double \"quote\" ok"

▶ char: #"a"

Constants (Literals)

▶ int: 3, 4, ~4
▶ real: 4.57, 1.5e-9
▶ bool: true, false

(names in ML are case-sentitive, True, False not the same as
true, false)

▶ string:

▶ "metalanguage",
▶ "hello\nworld",
▶ "\t1\t2\t3",
▶ "double \"quote\" ok"

▶ char: #"a"

Constants (Literals)

▶ int: 3, 4, ~4
▶ real: 4.57, 1.5e-9
▶ bool: true, false

(names in ML are case-sentitive, True, False not the same as
true, false)

▶ string:
▶ "metalanguage",

▶ "hello\nworld",
▶ "\t1\t2\t3",
▶ "double \"quote\" ok"

▶ char: #"a"

Constants (Literals)

▶ int: 3, 4, ~4
▶ real: 4.57, 1.5e-9
▶ bool: true, false

(names in ML are case-sentitive, True, False not the same as
true, false)

▶ string:
▶ "metalanguage",
▶ "hello\nworld",

▶ "\t1\t2\t3",
▶ "double \"quote\" ok"

▶ char: #"a"

Constants (Literals)

▶ int: 3, 4, ~4
▶ real: 4.57, 1.5e-9
▶ bool: true, false

(names in ML are case-sentitive, True, False not the same as
true, false)

▶ string:
▶ "metalanguage",
▶ "hello\nworld",
▶ "\t1\t2\t3",

▶ "double \"quote\" ok"
▶ char: #"a"

Constants (Literals)

▶ int: 3, 4, ~4
▶ real: 4.57, 1.5e-9
▶ bool: true, false

(names in ML are case-sentitive, True, False not the same as
true, false)

▶ string:
▶ "metalanguage",
▶ "hello\nworld",
▶ "\t1\t2\t3",
▶ "double \"quote\" ok"

▶ char: #"a"

Constants (Literals)

▶ int: 3, 4, ~4
▶ real: 4.57, 1.5e-9
▶ bool: true, false

(names in ML are case-sentitive, True, False not the same as
true, false)

▶ string:
▶ "metalanguage",
▶ "hello\nworld",
▶ "\t1\t2\t3",
▶ "double \"quote\" ok"

▶ char: #"a"

Operators
▶ int operators: ~ + - * div mod

▶ real operators: ~ + - * / (mention “overloaded” operators)
▶ string concatenation: ^
▶ size "hello";

▶ comparison operators: < > <= >= for the types

▶ string
▶ char
▶ int
▶ real

▶ String comparison is alphabetic (dictionary) order.
▶ (in)equality:

▶ values of “equality type” can be compared using = and <>

▶ but real is not an equality type
▶ bool, string, char, and int are equality type

▶ logical operators for boolean: orelse, andalso, not

Operators
▶ int operators: ~ + - * div mod

▶ real operators: ~ + - * / (mention “overloaded” operators)

▶ string concatenation: ^
▶ size "hello";

▶ comparison operators: < > <= >= for the types

▶ string
▶ char
▶ int
▶ real

▶ String comparison is alphabetic (dictionary) order.
▶ (in)equality:

▶ values of “equality type” can be compared using = and <>

▶ but real is not an equality type
▶ bool, string, char, and int are equality type

▶ logical operators for boolean: orelse, andalso, not

Operators
▶ int operators: ~ + - * div mod

▶ real operators: ~ + - * / (mention “overloaded” operators)
▶ string concatenation: ^

▶ size "hello";

▶ comparison operators: < > <= >= for the types

▶ string
▶ char
▶ int
▶ real

▶ String comparison is alphabetic (dictionary) order.
▶ (in)equality:

▶ values of “equality type” can be compared using = and <>

▶ but real is not an equality type
▶ bool, string, char, and int are equality type

▶ logical operators for boolean: orelse, andalso, not

Operators
▶ int operators: ~ + - * div mod

▶ real operators: ~ + - * / (mention “overloaded” operators)
▶ string concatenation: ^
▶ size "hello";

▶ comparison operators: < > <= >= for the types

▶ string
▶ char
▶ int
▶ real

▶ String comparison is alphabetic (dictionary) order.
▶ (in)equality:

▶ values of “equality type” can be compared using = and <>

▶ but real is not an equality type
▶ bool, string, char, and int are equality type

▶ logical operators for boolean: orelse, andalso, not

Operators
▶ int operators: ~ + - * div mod

▶ real operators: ~ + - * / (mention “overloaded” operators)
▶ string concatenation: ^
▶ size "hello";

▶ comparison operators: < > <= >= for the types

▶ string
▶ char
▶ int
▶ real

▶ String comparison is alphabetic (dictionary) order.
▶ (in)equality:

▶ values of “equality type” can be compared using = and <>

▶ but real is not an equality type
▶ bool, string, char, and int are equality type

▶ logical operators for boolean: orelse, andalso, not

Operators
▶ int operators: ~ + - * div mod

▶ real operators: ~ + - * / (mention “overloaded” operators)
▶ string concatenation: ^
▶ size "hello";

▶ comparison operators: < > <= >= for the types
▶ string

▶ char
▶ int
▶ real

▶ String comparison is alphabetic (dictionary) order.
▶ (in)equality:

▶ values of “equality type” can be compared using = and <>

▶ but real is not an equality type
▶ bool, string, char, and int are equality type

▶ logical operators for boolean: orelse, andalso, not

Operators
▶ int operators: ~ + - * div mod

▶ real operators: ~ + - * / (mention “overloaded” operators)
▶ string concatenation: ^
▶ size "hello";

▶ comparison operators: < > <= >= for the types
▶ string
▶ char

▶ int
▶ real

▶ String comparison is alphabetic (dictionary) order.
▶ (in)equality:

▶ values of “equality type” can be compared using = and <>

▶ but real is not an equality type
▶ bool, string, char, and int are equality type

▶ logical operators for boolean: orelse, andalso, not

Operators
▶ int operators: ~ + - * div mod

▶ real operators: ~ + - * / (mention “overloaded” operators)
▶ string concatenation: ^
▶ size "hello";

▶ comparison operators: < > <= >= for the types
▶ string
▶ char
▶ int

▶ real

▶ String comparison is alphabetic (dictionary) order.
▶ (in)equality:

▶ values of “equality type” can be compared using = and <>

▶ but real is not an equality type
▶ bool, string, char, and int are equality type

▶ logical operators for boolean: orelse, andalso, not

Operators
▶ int operators: ~ + - * div mod

▶ real operators: ~ + - * / (mention “overloaded” operators)
▶ string concatenation: ^
▶ size "hello";

▶ comparison operators: < > <= >= for the types
▶ string
▶ char
▶ int
▶ real

▶ String comparison is alphabetic (dictionary) order.
▶ (in)equality:

▶ values of “equality type” can be compared using = and <>

▶ but real is not an equality type
▶ bool, string, char, and int are equality type

▶ logical operators for boolean: orelse, andalso, not

Operators
▶ int operators: ~ + - * div mod

▶ real operators: ~ + - * / (mention “overloaded” operators)
▶ string concatenation: ^
▶ size "hello";

▶ comparison operators: < > <= >= for the types
▶ string
▶ char
▶ int
▶ real

▶ String comparison is alphabetic (dictionary) order.

▶ (in)equality:

▶ values of “equality type” can be compared using = and <>

▶ but real is not an equality type
▶ bool, string, char, and int are equality type

▶ logical operators for boolean: orelse, andalso, not

Operators
▶ int operators: ~ + - * div mod

▶ real operators: ~ + - * / (mention “overloaded” operators)
▶ string concatenation: ^
▶ size "hello";

▶ comparison operators: < > <= >= for the types
▶ string
▶ char
▶ int
▶ real

▶ String comparison is alphabetic (dictionary) order.
▶ (in)equality:

▶ values of “equality type” can be compared using = and <>

▶ but real is not an equality type
▶ bool, string, char, and int are equality type

▶ logical operators for boolean: orelse, andalso, not

Operators
▶ int operators: ~ + - * div mod

▶ real operators: ~ + - * / (mention “overloaded” operators)
▶ string concatenation: ^
▶ size "hello";

▶ comparison operators: < > <= >= for the types
▶ string
▶ char
▶ int
▶ real

▶ String comparison is alphabetic (dictionary) order.
▶ (in)equality:

▶ values of “equality type” can be compared using = and <>

▶ but real is not an equality type
▶ bool, string, char, and int are equality type

▶ logical operators for boolean: orelse, andalso, not

Operators
▶ int operators: ~ + - * div mod

▶ real operators: ~ + - * / (mention “overloaded” operators)
▶ string concatenation: ^
▶ size "hello";

▶ comparison operators: < > <= >= for the types
▶ string
▶ char
▶ int
▶ real

▶ String comparison is alphabetic (dictionary) order.
▶ (in)equality:

▶ values of “equality type” can be compared using = and <>

▶ but real is not an equality type

▶ bool, string, char, and int are equality type

▶ logical operators for boolean: orelse, andalso, not

Operators
▶ int operators: ~ + - * div mod

▶ real operators: ~ + - * / (mention “overloaded” operators)
▶ string concatenation: ^
▶ size "hello";

▶ comparison operators: < > <= >= for the types
▶ string
▶ char
▶ int
▶ real

▶ String comparison is alphabetic (dictionary) order.
▶ (in)equality:

▶ values of “equality type” can be compared using = and <>

▶ but real is not an equality type
▶ bool, string, char, and int are equality type

▶ logical operators for boolean: orelse, andalso, not

Operators
▶ int operators: ~ + - * div mod

▶ real operators: ~ + - * / (mention “overloaded” operators)
▶ string concatenation: ^
▶ size "hello";

▶ comparison operators: < > <= >= for the types
▶ string
▶ char
▶ int
▶ real

▶ String comparison is alphabetic (dictionary) order.
▶ (in)equality:

▶ values of “equality type” can be compared using = and <>

▶ but real is not an equality type
▶ bool, string, char, and int are equality type

▶ logical operators for boolean: orelse, andalso, not

Basic, continued

▶ conditional:
if … then … else … as an expression

▶ ML won’t do implicit type conversion: 3 * 4.5 is an error
▶ In such a case, have to use conversion function: real(12);

floor(3.5); ceil(7.6); round(3.2); trunc(7.1);
ord(#"a"); chr(66); str(#"a");

▶ The argument of a function call doesn’t need surrounding
parentheses!

▶ f a is good enough, but can also say f(a), (f a), (f) a,
(f)(a). However, have to say f(a+1) because function
application binds tighter than +

▶ Also, function application is left-associative, so f g a means
(f g) a

Basic, continued

▶ conditional:
if … then … else … as an expression

▶ ML won’t do implicit type conversion: 3 * 4.5 is an error

▶ In such a case, have to use conversion function: real(12);
floor(3.5); ceil(7.6); round(3.2); trunc(7.1);
ord(#"a"); chr(66); str(#"a");

▶ The argument of a function call doesn’t need surrounding
parentheses!

▶ f a is good enough, but can also say f(a), (f a), (f) a,
(f)(a). However, have to say f(a+1) because function
application binds tighter than +

▶ Also, function application is left-associative, so f g a means
(f g) a

Basic, continued

▶ conditional:
if … then … else … as an expression

▶ ML won’t do implicit type conversion: 3 * 4.5 is an error
▶ In such a case, have to use conversion function: real(12);

floor(3.5); ceil(7.6); round(3.2); trunc(7.1);
ord(#"a"); chr(66); str(#"a");

▶ The argument of a function call doesn’t need surrounding
parentheses!

▶ f a is good enough, but can also say f(a), (f a), (f) a,
(f)(a). However, have to say f(a+1) because function
application binds tighter than +

▶ Also, function application is left-associative, so f g a means
(f g) a

Basic, continued

▶ conditional:
if … then … else … as an expression

▶ ML won’t do implicit type conversion: 3 * 4.5 is an error
▶ In such a case, have to use conversion function: real(12);

floor(3.5); ceil(7.6); round(3.2); trunc(7.1);
ord(#"a"); chr(66); str(#"a");

▶ The argument of a function call doesn’t need surrounding
parentheses!

▶ f a is good enough, but can also say f(a), (f a), (f) a,
(f)(a). However, have to say f(a+1) because function
application binds tighter than +

▶ Also, function application is left-associative, so f g a means
(f g) a

Basic, continued

▶ conditional:
if … then … else … as an expression

▶ ML won’t do implicit type conversion: 3 * 4.5 is an error
▶ In such a case, have to use conversion function: real(12);

floor(3.5); ceil(7.6); round(3.2); trunc(7.1);
ord(#"a"); chr(66); str(#"a");

▶ The argument of a function call doesn’t need surrounding
parentheses!

▶ f a is good enough, but can also say f(a), (f a), (f) a,
(f)(a). However, have to say f(a+1) because function
application binds tighter than +

▶ Also, function application is left-associative, so f g a means
(f g) a

Basic, continued

▶ conditional:
if … then … else … as an expression

▶ ML won’t do implicit type conversion: 3 * 4.5 is an error
▶ In such a case, have to use conversion function: real(12);

floor(3.5); ceil(7.6); round(3.2); trunc(7.1);
ord(#"a"); chr(66); str(#"a");

▶ The argument of a function call doesn’t need surrounding
parentheses!

▶ f a is good enough, but can also say f(a), (f a), (f) a,
(f)(a). However, have to say f(a+1) because function
application binds tighter than +

▶ Also, function application is left-associative, so f g a means
(f g) a

Variable Definition

▶ variable definition:

val x = 3;
val y = if x = 7 then 1.0 else 2.0;

▶ One can say

val r = 3.1;
val r = "rstring";

but these two r’s are different r’s!.

Variable Definition

▶ variable definition:

val x = 3;
val y = if x = 7 then 1.0 else 2.0;

▶ One can say

val r = 3.1;
val r = "rstring";

but these two r’s are different r’s!.

Tuples

▶ A tuple is an ordered sequence of values.

▶ Components of a tuple can be of different types, e.g.,

val vector1 = (3.5, 4.2);
val aTup = ("yes", 3, (4.5, #"a"));

▶ #n is the tuple component access function

#2 aTup;
#1 vector1;

▶ There’s no tuple of length 1, so, for example, the expression
(3) has type int.

▶ However, there’s something that looks like a tuple of length 0.
It’s called a unit. Its usefulness is related to functions, which
will be described shortly.

Tuples

▶ A tuple is an ordered sequence of values.
▶ Components of a tuple can be of different types, e.g.,

val vector1 = (3.5, 4.2);
val aTup = ("yes", 3, (4.5, #"a"));

▶ #n is the tuple component access function

#2 aTup;
#1 vector1;

▶ There’s no tuple of length 1, so, for example, the expression
(3) has type int.

▶ However, there’s something that looks like a tuple of length 0.
It’s called a unit. Its usefulness is related to functions, which
will be described shortly.

Tuples

▶ A tuple is an ordered sequence of values.
▶ Components of a tuple can be of different types, e.g.,

val vector1 = (3.5, 4.2);
val aTup = ("yes", 3, (4.5, #"a"));

▶ #n is the tuple component access function

#2 aTup;
#1 vector1;

▶ There’s no tuple of length 1, so, for example, the expression
(3) has type int.

▶ However, there’s something that looks like a tuple of length 0.
It’s called a unit. Its usefulness is related to functions, which
will be described shortly.

Tuples

▶ A tuple is an ordered sequence of values.
▶ Components of a tuple can be of different types, e.g.,

val vector1 = (3.5, 4.2);
val aTup = ("yes", 3, (4.5, #"a"));

▶ #n is the tuple component access function

#2 aTup;
#1 vector1;

▶ There’s no tuple of length 1, so, for example, the expression
(3) has type int.

▶ However, there’s something that looks like a tuple of length 0.
It’s called a unit. Its usefulness is related to functions, which
will be described shortly.

Tuples

▶ A tuple is an ordered sequence of values.
▶ Components of a tuple can be of different types, e.g.,

val vector1 = (3.5, 4.2);
val aTup = ("yes", 3, (4.5, #"a"));

▶ #n is the tuple component access function

#2 aTup;
#1 vector1;

▶ There’s no tuple of length 1, so, for example, the expression
(3) has type int.

▶ However, there’s something that looks like a tuple of length 0.
It’s called a unit. Its usefulness is related to functions, which
will be described shortly.

Lists

▶ A list is also an ordered sequence of values, but all its
elements must be of the same type.

[1, 2];
[3.1, 2.0, 3.4];
["hi", "ho"];
[(1,2), (3,4)];
[[1], [2,3,4]]
nil;
[];

▶ To test if a list is empty, use null

null [];
null [1, 2, 3];

Lists

▶ A list is also an ordered sequence of values, but all its
elements must be of the same type.

[1, 2];
[3.1, 2.0, 3.4];
["hi", "ho"];
[(1,2), (3,4)];
[[1], [2,3,4]]
nil;
[];

▶ To test if a list is empty, use null

null [];
null [1, 2, 3];

List continued

▶ list concatenation operator @:

[1,2] @ [3, 4, 5]

This “cons operator” is right-associative, thus, 1 :: 2 ::
[3, 4] gives [1, 2, 3, 4] as expected.

▶ hd and tl operators give the head and tail of the list,
respectively.

hd [1, 2, 3];
tl [1, 2, 3];

▶ conversion functions:

explode "hello";
implode [#"a", #"b"]

List continued

▶ list concatenation operator @:

[1,2] @ [3, 4, 5]

This “cons operator” is right-associative, thus, 1 :: 2 ::
[3, 4] gives [1, 2, 3, 4] as expected.

▶ hd and tl operators give the head and tail of the list,
respectively.

hd [1, 2, 3];
tl [1, 2, 3];

▶ conversion functions:

explode "hello";
implode [#"a", #"b"]

List continued

▶ list concatenation operator @:

[1,2] @ [3, 4, 5]

This “cons operator” is right-associative, thus, 1 :: 2 ::
[3, 4] gives [1, 2, 3, 4] as expected.

▶ hd and tl operators give the head and tail of the list,
respectively.

hd [1, 2, 3];
tl [1, 2, 3];

▶ conversion functions:

explode "hello";
implode [#"a", #"b"]

Function continued

▶ function definition:

<fun-def> ::= fun <fn-name> [<param>] = <expression>

▶ The literal () is called a unit. The term unit also denotes a
type that has () as its only value.

▶ Note that every ML function takes exactly one parameter. If
you want zero parameter, use (). If you want more than 1
parameter, use a tuple.

▶ Every function application also has “return value” which is the
value of the function call expression. Even a function that
works by creating a side effect only like print has a
value—its value is unit.

Function continued

▶ function definition:

<fun-def> ::= fun <fn-name> [<param>] = <expression>

▶ The literal () is called a unit. The term unit also denotes a
type that has () as its only value.

▶ Note that every ML function takes exactly one parameter. If
you want zero parameter, use (). If you want more than 1
parameter, use a tuple.

▶ Every function application also has “return value” which is the
value of the function call expression. Even a function that
works by creating a side effect only like print has a
value—its value is unit.

Function continued

▶ function definition:

<fun-def> ::= fun <fn-name> [<param>] = <expression>

▶ The literal () is called a unit. The term unit also denotes a
type that has () as its only value.

▶ Note that every ML function takes exactly one parameter. If
you want zero parameter, use (). If you want more than 1
parameter, use a tuple.

▶ Every function application also has “return value” which is the
value of the function call expression. Even a function that
works by creating a side effect only like print has a
value—its value is unit.

Function continued

▶ function definition:

<fun-def> ::= fun <fn-name> [<param>] = <expression>

▶ The literal () is called a unit. The term unit also denotes a
type that has () as its only value.

▶ Note that every ML function takes exactly one parameter. If
you want zero parameter, use (). If you want more than 1
parameter, use a tuple.

▶ Every function application also has “return value” which is the
value of the function call expression. Even a function that
works by creating a side effect only like print has a
value—its value is unit.

Introduction to Types

▶ ->, *, and list are the 3 type constructors we learned in this
chapter (ordered from lowest to highest precedence).

▶ Type variables

'a 'b ...
"a "b ...

and polytype.

Introduction to Types

▶ ->, *, and list are the 3 type constructors we learned in this
chapter (ordered from lowest to highest precedence).

▶ Type variables

'a 'b ...
"a "b ...

and polytype.

