Syllabus for MCS-284: Computer Organization (Fall 2006)

Overview

MCS-284 will cover the architecture and organization of computer hardware. We will look at the MIPS architecture as a representative modern RISC architecture, and do some assembly language programming for that architecture. We'll see how numbers are represented within a computer and how the circuits that perform arithmetic operations on those numerals are organized. With a high-level overview of digital logic design to support us, we'll look at how the datapaths and control circuits of processors are designed, and in particular we'll look in some depth at pipelined processor design, which is the key organizational principle at work in most present-day processors. We'll examine the use of memory hierarchy (cache memory and virtual memory) to provide the illusion of a large fast memory from the reality of limited fast memory plus a larger but slower memory. We'll look at input/output devices and buses, networking, and parallel computers. Throughout the course there will be an emphasis on the quantitative performance characteristics of computer systems; we'll look at the influence of architecture and organization on performance, and take an introductory look at the empirical and analytical tools appropriate to the study of performance. Performance measurement will be one of the main themes reinforced through the lab assignments; the other will be assembly language programming.

Reaching me

All office, phone and schedule information will be maintained on my web page. I'll try to keep it updated with any temporary changes to my schedule as well. In short, if my office door is open you are welcome; if I'm busy, we'll set up an appointment. Email and phone calls work, too.

All course handouts will be available through my World Wide Web page, and some supplementary materials such as code to use as a starting point in assignments may be available there as well. The URL for this course is http://www.gac.edu/~wolfe/284/.

Text

Our text will be the second edition of Computer Organization and Design: The Hardware/Software Interface (3rd edition) by David A. Patterson and John L. Hennessy, published by Morgan Kaufmann.

Labs

Normally labs will be held on Wednesdays and classes on the other four days, but there are some exceptions; these are marked in the syllabus. Labs will be held in the OHS 326 lab. Lab 0 will actually be a special one-day demonstration experience not requiring a lab report; only labs 1 through 4 will be ``real labs'' with reports.

Attendance is expected for all lab days. (If you turn in a lab report early, you are excused from the remaining days devoted to that lab.) I will excuse up to two absences per student, for any reason. Use yours wisely. If you exceed this allowance, I may reduce your course grade by one letter grade.

Homework assignment policy

I will assign a collection of homework problems for each chapter. You may turn in any individual homework problem whenever you think you have it solved. I will return it to you as quickly as I can, but normally with only an indication of whether it is acceptable or needs more work. (Sometimes I may give a brief indication of what area it needs more work in.) If a problem needs more work, and you aren't sure what sort of work it still needs, you should treat that as an invitation to come talk with me about it. Once you've done the additional work, you may turn the problem in again, attached to (or clearly marked on) the original. In fact, you may turn each problem in as many times as you like, until it is marked as acceptable. Your grade for the homework portion of the course will be based on the fraction of homework problems that you eventually did acceptably.

You are to submit your first attempt at a homework problem on the listed due date. You may then attempt the homework problem again as many times as you wish, up until the scheduled start of class preceding the day of the next exam. So, if an exam is scheduled for Tuesday, your homework is due at the start of class on Monday, the day before.

Unless I indicate that a particular problem must be done individually, you may work on any problem in a group of two or three students. One copy of the solution produced by the team should be turned in, with all team members names on it. Write "we all contributed fairly to this solution" and have all team members sign under that statement.

Tests

There will be two intra-term tests and a final exam, as shown on the course schedule.

Processor

Each student will choose a processor for which he will become the resident expert. Details of this assignment are on a separate handout.

Honor

Students are encouraged to discuss the course, including issues raised by the assignments. However, the solutions to assignments should be individual original work unless otherwise specified. If an assignment makes you realize you don't understand the material, ask a fellow student a question designed to improve your understanding, not one designed to get the assignment done. To do otherwise is to cheat yourself out of understanding, as well as to be intolerably dishonorable.

Any substantive contribution to your solution by another person or taken from a publication should be properly acknowledged in writing. Failure to do so is plagiarism and will necessitate disciplinary action.

The same standards regarding plagiarism apply to team projects as to the work of individuals, except that the author is now the entire team rather than an individual. Anything taken from a source outside the team should be be properly cited.

One additional issue that arises from the team authorship of project reports is that all team members must stand behind all reports bearing their names. All team members have quality assurance responsibility for the entire project. If there is irreconcilable disagreement within the team it is necessary to indicate as much in the reports; this can be in the form of a ``minority opinion'' or ``dissenting opinion'' section where appropriate.

Assignments and grading

All lab assignments are due at the beginning of class on the day indicated. Late assignments will be penalized by one ``grade notch'' (such as A to A- or A- to B+) for each weekday late or fraction thereof. However, no late assignments will be accepted after graded assignments are handed back.

If you are too sick to complete an assignment on time, you will not be penalized. Simply write ``late due to illness'' at the top of the assignment, sign your name and hand it in. Other circumstances will be evaluated on a case-by-case basis.

The course components will contribute to your grade in the following proportion:

If you get 90% or more of the points, you will earn an A, 85% for an A-, 80% for a B+ and down by 5 percentage points each to the lowest passing grade of 45% for a D.

However, I reserve the right to subjectively adjust your final grade. Please see me if you have any question how you stand. Class participation is not graded; however, it allows you to find and repair the gaps in your understanding before doing the assignments, and thus can dramatically improve your grade. You are responsible for all course material, whether or not you are present when it was covered or distributed.

All assignments should be readily readable, and should not presuppose that I already know what you are trying to say. Use full English sentences where appropriate (namely almost everywhere) and clear diagrams, programs, etc. Remember that your goal is to communicate clearly, and that the appearance of these technical items plays a role in this communication process. Be sure your assignments are always stapled together and that your name is always on them.

Grade disputes should be made before the final exam. I will fix obvious grading errors promptly (and will thank you for pointing them out). For students especially fond of debate, I reserve the right to regrade a whole homework or exam.