Distinguishing Gamblers from Investors at the Blackjack Table

David Wolfe

http://www.gustavus.edu/~wolfe/papers
OUTLINE

• A little history
• Blackjack rules and about card-counting
• Evaluating an individual’s strategy
• Evaluating expected winnings for a baseline strategy
• Unresolved issues
HISTORY

• (1956) Baldwin, Cantey, Maisel, McDermott: Basic strategy
• (1966) Thorp, *Beat the Dealer*
• (1979-1999) Griffin, *The Theory of Blackjack*
• About blackjack card-counters
BLACKJACK RULES

- Play for 21: *hit, stand, bust, hard, soft, deck, shoe*
- Fixed dealer strategy
- Blackjack pays 3:2
- Double down
- Split
- Variations: decks, surrender, insurance, resplitting, double after split, playing multiple hands, ...
Basic strategy for an infinite deck

<table>
<thead>
<tr>
<th>HARD</th>
<th>SOFT</th>
<th>SPLIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>4–8 HHHHHHHHHH</td>
<td>2 HHHHHHHHHH</td>
<td>A PPPPPPPPPP</td>
</tr>
<tr>
<td>9 HHDDDDHHHH</td>
<td>3 HHHHDDHHHH</td>
<td>2 HPPPPPPP HH</td>
</tr>
<tr>
<td>10 HDDDDDDDDH</td>
<td>4 HHHHDDHHHH</td>
<td>3 HPPPPPPP HH</td>
</tr>
<tr>
<td>11 HDDDDDDDD</td>
<td>5 HHHHDDHHHH</td>
<td>4 HHHHPHHHHH</td>
</tr>
<tr>
<td>12 HHSSSSHHHH</td>
<td>6 HHHDDHHHH</td>
<td>5 HDDDDDDDDH</td>
</tr>
<tr>
<td>13 HSSSSSSHHH</td>
<td>7 HHDDDDHHHH</td>
<td>6 HPPPPPPHHH</td>
</tr>
<tr>
<td>14 HSSSSSSHHH</td>
<td>8 SSHDDSSHH</td>
<td>7 HPPPPPPHHH</td>
</tr>
<tr>
<td>15 HSSSSSSHH</td>
<td>9 SSSSSSSSS</td>
<td>8 PPPPPPPP PP</td>
</tr>
<tr>
<td>16 HSSSSSSSHH</td>
<td>10 SSSSSSSSS</td>
<td>9 SPPPPSPPS</td>
</tr>
<tr>
<td>17–21 SSSSSSSSSS</td>
<td>11 SSSSSSSSSS</td>
<td>T SSSSSSSSSS</td>
</tr>
</tbody>
</table>
CARD COUNTING

• A typical counting system maintains

\[
\frac{\text{(number of 10’s and A’s)}}{\text{(number of 2’s through 6’s)}} - \frac{\text{(number of decks remaining)}}{}
\]

• Effect on play

• Effect on wagers

• Basic strategy gives typically gives dealer .5% advantage

• Counting well typically gives player .5% advantage
GOAL and MOTIVATION

Evaluate a player’s skill, measured by long term expected winnings

- To help gamblers
- Larger question of evaluating decisions under uncertainty
CHALLENGES

- The problems of variance
- No knowledge of player strategy
- Can’t expose player to all possible situations
- Computational efficiency
KEY IDEA

1. Determine and evaluate baseline strategy
2. Compare expectation of player’s choices to baseline
3. Credit or debit player’s expected winnings rather than actual
Define
\[C \overset{\text{def}}{=} \text{Sample space of cards remaining} \]
\[O \overset{\text{def}}{=} \text{Sample space specifying ordering of the deck} \]
\[W_S \overset{\text{def}}{=} \text{Winnings playing strategy } S \]
\[B \overset{\text{def}}{=} \text{Any automated baseline strategy} \]

Then,
\[\mathbb{E}_C \{ \mathbb{E}_O \{ W_S \} \} = \mathbb{E}_C \{ \mathbb{E}_O \{ W_B \} \} \]
\[+ \mathbb{E}_C \{ \mathbb{E}_O \{ W_S \} - \mathbb{E}_O \{ W_B \} \} \]

- \(\mathbb{E}_O \{ W \} \) has variance exceeding 1.3 (with unit bets).
- \(\mathbb{E}_O \{ W_S \} - \mathbb{E}_O \{ W_B \} \) typically has variance between \(10^{-6} \) and \(10^{-5} \).
\(C \overset{\text{def}}{=} \) Sample space of cards remaining
\(D \overset{\text{def}}{=} \) Sample space specifying ordering of initial deals
\(O \overset{\text{def}}{=} \) Sample space specifying ordering of the deck after deal
\(W_{SS'} \overset{\text{def}}{=} \) Winnings wagering strategy \(S \), playing strategy \(S' \)
\(B \overset{\text{def}}{=} \) Any automated baseline strategy

\[
\mathbb{E}_C \{ \mathbb{E}_D \{ \mathbb{E}_O \{ W_{SS} \} \} \} = \mathbb{E}_C \left\{ \begin{array}{l}
\mathbb{E}_D \{ \mathbb{E}_O \{ W_{SB} \} \} \\
+ \mathbb{E}_D \{ \mathbb{E}_O \{ W_{SS} \} - \mathbb{E}_O \{ W_{SB} \} \}
\end{array} \right\}
\]

- \(\mathbb{E}_D \{ \mathbb{E}_O \{ W_{SB} \} \} \) typically has variance between \(10^{-3} \) and \(10^{-4} \).
PERFECT DECISIONS (with replacement)a

\[p_i \overset{\text{def}}{=} \mathbb{P} \{ \text{drawing card } i \text{ from deck} \} \quad \text{Ace is 1} \]

\[P^S[i, j] \overset{\text{def}}{=} \mathbb{P} \{ \text{dealer reaches } i \mid \text{starts with soft } j \} \]

\[P^S[i, j] = \begin{cases}
1 & \text{if } i = j \geq 17 \\
1 & \text{if } i = j = \text{bust} \\
0 & \text{if } i \neq j \geq 17 \\
P^S[i, j + 10] & \text{if } 7 \leq j \leq 11 \\
\sum_k p_k P^S[i, j + k] & \text{otherwise}
\end{cases} \]

\[
p_i \overset{\text{def}}{=} \mathbb{P} \{\text{drawing card } i \text{ from deck}\} \quad \text{Ace is 1}
\]
\[
P^S[i, j] \overset{\text{def}}{=} \mathbb{P} \{\text{dealer reaches } i \mid \text{starts with soft } j\}
\]
\[
P^H[i, j] \overset{\text{def}}{=} \mathbb{P} \{\text{dealer reaches } i \mid \text{starts with hard } j\}
\]
\[
= p_1 P^S[i, j + 1] + \sum_{2 \leq k \leq 10} p_k P^H[i, j + 10]
\]
\[
P[i, j] \overset{\text{def}}{=} \mathbb{P} \{\text{dealer reaches } i \mid \text{starts with card } j\}
\]

conditioning on dealer not having blackjack

\[
= \begin{cases}
 P^H[i, j] & \text{if } 2 \leq j \leq 9 \\
 (P^H[21, 10] - p_1)/(1 - p_1) & \text{if } i = 21 \text{ and } j = 10 \\
 P^H[i, 10]/(1 - p_1) & \text{if } i \neq 21 \text{ and } j = 10 \\
 (P^S[21, 1] - p_{10}/(1 - p_{10}) & \text{if } i = 21 \text{ and } j = 1 \\
 P^S[i, 1]/(1 - p_{10}) & \text{if } i \neq 21 \text{ and } j = 1
\end{cases}
\]
\[
P[i, j] \overset{\text{def}}{=} \mathbb{P} \{ \text{dealer reaches } i \mid \text{starts with card } j \}
\]

<table>
<thead>
<tr>
<th>(j)</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.189</td>
<td>0.189</td>
<td>0.189</td>
<td>0.189</td>
<td>0.078</td>
<td>0.167</td>
</tr>
<tr>
<td>2</td>
<td>0.140</td>
<td>0.135</td>
<td>0.130</td>
<td>0.124</td>
<td>0.118</td>
<td>0.354</td>
</tr>
<tr>
<td>3</td>
<td>0.135</td>
<td>0.130</td>
<td>0.126</td>
<td>0.120</td>
<td>0.115</td>
<td>0.374</td>
</tr>
<tr>
<td>4</td>
<td>0.130</td>
<td>0.126</td>
<td>0.121</td>
<td>0.116</td>
<td>0.111</td>
<td>0.394</td>
</tr>
<tr>
<td>5</td>
<td>0.122</td>
<td>0.122</td>
<td>0.118</td>
<td>0.113</td>
<td>0.108</td>
<td>0.416</td>
</tr>
<tr>
<td>6</td>
<td>0.165</td>
<td>0.106</td>
<td>0.106</td>
<td>0.102</td>
<td>0.097</td>
<td>0.423</td>
</tr>
<tr>
<td>7</td>
<td>0.369</td>
<td>0.138</td>
<td>0.079</td>
<td>0.079</td>
<td>0.074</td>
<td>0.262</td>
</tr>
<tr>
<td>8</td>
<td>0.129</td>
<td>0.359</td>
<td>0.129</td>
<td>0.069</td>
<td>0.069</td>
<td>0.245</td>
</tr>
<tr>
<td>9</td>
<td>0.120</td>
<td>0.120</td>
<td>0.351</td>
<td>0.120</td>
<td>0.061</td>
<td>0.228</td>
</tr>
<tr>
<td>10</td>
<td>0.121</td>
<td>0.121</td>
<td>0.121</td>
<td>0.371</td>
<td>0.037</td>
<td>0.230</td>
</tr>
</tbody>
</table>
\[
\begin{align*}
 p_i & \overset{\text{def}}{=} \mathbb{P} \{ \text{drawing card } i \text{ from deck} \} \quad \text{Ace is 1} \\
 P[i, j] & \overset{\text{def}}{=} \mathbb{P} \{ \text{dealer reaches } i \mid \text{starts with card } j \} \\
 E_a^H[x, y] & \overset{\text{def}}{=} \mathbb{E} \{ \text{winnings} \mid \text{dealer } x, \text{player hard } y, \text{action } a \} \\
 E_a^S[x, y] & \overset{\text{def}}{=} \mathbb{E} \{ \text{winnings} \mid \text{dealer } x, \text{player soft } y, \text{action } a \} \\
 a & \in \{ (h)it, (s)tand, (d)ouble down, s(p)lit \} \\
 E_s^H[x, y] & = P[\text{bust}, x] + \sum_{17 \leq k \leq y-1} P[k, x] - \sum_{y+1 \leq k \leq 21} P[k, x] \\
 E_s^S[x, y] & = \begin{cases}
 E_s^H[x, y] & \text{if } y \geq 12 \\
 E_s^H[x, y + 10] & \text{if } y \leq 11
 \end{cases}
\end{align*}
\]
\[E_s^H[x, y] \overset{\text{def}}{=} \mathbb{E} \{ \text{winnings} \mid \text{stand with } y \text{ versus dealer } x \} \]

<table>
<thead>
<tr>
<th>y</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>-.667</td>
<td>-.293</td>
<td>-.252</td>
<td>-.211</td>
<td>-.167</td>
<td>-.154</td>
<td>-.475</td>
<td>-.511</td>
<td>-.543</td>
<td>-.540</td>
</tr>
<tr>
<td>17</td>
<td>-.478</td>
<td>-.153</td>
<td>-.117</td>
<td>-.081</td>
<td>-.045</td>
<td>.012</td>
<td>-.107</td>
<td>-.382</td>
<td>-.423</td>
<td>-.420</td>
</tr>
<tr>
<td>18</td>
<td>-.100</td>
<td>.122</td>
<td>.148</td>
<td>.176</td>
<td>.200</td>
<td>.283</td>
<td>.400</td>
<td>.106</td>
<td>-.183</td>
<td>-.178</td>
</tr>
<tr>
<td>19</td>
<td>.278</td>
<td>.386</td>
<td>.404</td>
<td>.423</td>
<td>.440</td>
<td>.496</td>
<td>.616</td>
<td>.594</td>
<td>.288</td>
<td>.063</td>
</tr>
<tr>
<td>20</td>
<td>.655</td>
<td>.640</td>
<td>.650</td>
<td>.661</td>
<td>.670</td>
<td>.704</td>
<td>.773</td>
<td>.792</td>
<td>.758</td>
<td>.555</td>
</tr>
<tr>
<td>21</td>
<td>.922</td>
<td>.882</td>
<td>.885</td>
<td>.889</td>
<td>.892</td>
<td>.903</td>
<td>.926</td>
<td>.931</td>
<td>.939</td>
<td>.963</td>
</tr>
</tbody>
</table>
$$E_a^H[x, y] \overset{\text{def}}{=} \mathbb{E} \{ \text{winnings} \mid \text{dealer } x, \text{player hard } y, \text{action } a \}$$

$$E_a^S[x, y] \overset{\text{def}}{=} \mathbb{E} \{ \text{winnings} \mid \text{dealer } x, \text{player soft } y, \text{action } a \}$$

$$E_{sh}^H[x, y] \overset{\text{def}}{=} \max E_s[x, y], E_h[x, y]$$

$$E_{sh}^S[x, y] \overset{\text{def}}{=} \max E_s[x, y], E_h[x, y]$$

$$E^S_h[x, y] = \sum_{1 \leq k \leq 10} p(k) E_{sh}^S[x, y + k]$$

$$E^H_h[x, y] = p(1) E_{sh}^S[x, y + 1] + \sum_{2 \leq k \leq 10} p(k) E_{sh}^H[x, y + k]$$
$E_a^H [x, y] \overset{\text{def}}{=} \mathbb{E} \{ \text{winnings} \mid \text{dealer } x, \text{ player hard } y, \text{ action } a \}$

$E_a^S [x, y] \overset{\text{def}}{=} \mathbb{E} \{ \text{winnings} \mid \text{dealer } x, \text{ player soft } y, \text{ action } a \}$

after doubling down, you must take exactly one card

$E_d^H [x, y] = p(1)E_s^S [x, y + 1] + \sum_{2 \leq k \leq 10} p(k)E_s^H [x, y + k]$

$E_d^H [x, y] = p(1)E_s^S [x, y + 1] + \sum_{2 \leq k \leq 10} p(k)E_s^H [x, y + k]$
$E^H_a[x, y] \overset{\text{def}}{=} E \{\text{winnings} \mid \text{dealer } x, \text{player hard } y, \text{action } a\}$

$E^S_a[x, y] \overset{\text{def}}{=} E \{\text{winnings} \mid \text{dealer } x, \text{player soft } y, \text{action } a\}$

You must take exactly one card on each split ace

$E_p[x, 2] = 2 \cdot \sum_{1 \leq k \leq 10} E^S_s[x, x + k]$

Resplitting other cards is possible

$E_p[x, y] = 2 \cdot (p(y/2)E_p[x, y] + p(1)E^S_{hsd}[x, y/2 + 1]$

$\quad + \sum_{\substack{k \leq 2 \leq 10 \\ k \neq y/2}} E^H_{hsd}[x, y/2 + k])$

$2 \cdot (p(1)E^S_{hsd}[x, y/2 + 1] + \sum_{\substack{k \leq 2 \leq 10 \\ k \neq y/2}} E^H_{hsd}[x, y/2 + k])$

$E_p[x, y] = \frac{1 - 2p(y/2)}{1 - 2p(y/2)}$

but $E_p[x, y]$ value could be infinite...
\[E[x, y] \overset{\text{def}}{=} \mathbb{E} \{ \text{winnings} \mid \text{dlr } x, \text{ plr } y, \text{ dlr has no blackjack} \} \]

\[E[10, y] = (1 - p(1))E_{\text{legal}}[10, y] - p(1) \]

\[E[1, y] = (1 - p(10))E_{\text{legal}}[1, y] - p(10) \]

\[E[x, y] = (1 - p(10))E_{\text{legal}}[1, y] - p(10) \]

Player’s blackjack plays 3 : 2, unless dealer also has blackjack

\[E[10, bj] = 3(1 - p(1))/2 \]

\[E[1, bj] = 3(1 - p(10))/2 \]

\[E[x, bj] = 3/2 \]
HIGH-LOW COUNT SYSTEMS

- Count \(\text{Tens + Aces - 2s - 3s - 4s - 5s - 6s} \)
- Balanced count system
- Count per deck affects both play and wager strategy
- Wagers vary from 1 unit to 10 units
- Dubner 1963, Wong 1994
- Wong predicts expected winnings of \(.020 \pm .002\) units per hand

\[
S = \text{Wong’s strategy} \\
B = \text{semi-perfect strategy}
\]
SIMULATION RESULTS

<table>
<thead>
<tr>
<th>Hands Simulated</th>
<th>Average Actual Winnings</th>
<th>Hands</th>
<th>Assessed Expectation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Run 1</td>
<td>Run 2</td>
<td>Run 1</td>
</tr>
<tr>
<td>10,000</td>
<td>-.06128</td>
<td>.05743</td>
<td>100</td>
</tr>
<tr>
<td>20,000</td>
<td>-.00184</td>
<td>.05600</td>
<td>200</td>
</tr>
<tr>
<td>50,000</td>
<td>.04133</td>
<td>.02950</td>
<td>500</td>
</tr>
<tr>
<td>100,000</td>
<td>.03622</td>
<td>.01845</td>
<td>1,000</td>
</tr>
<tr>
<td>200,000</td>
<td>.02756</td>
<td>.03175</td>
<td>2,000</td>
</tr>
<tr>
<td>500,000</td>
<td>.02317</td>
<td>.02516</td>
<td>5,000</td>
</tr>
<tr>
<td>1,000,000</td>
<td>.02221</td>
<td>.02427</td>
<td>10,000</td>
</tr>
<tr>
<td>2,000,000</td>
<td>.02055</td>
<td>.02262</td>
<td>20,000</td>
</tr>
<tr>
<td>5,000,000</td>
<td>.02197</td>
<td>.02059</td>
<td>50,000</td>
</tr>
<tr>
<td>10,000,000</td>
<td>.01873</td>
<td>.02002</td>
<td>100,000</td>
</tr>
<tr>
<td>Variance</td>
<td>20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Difference of about .04 due to approximations of EV’s
UNRESOLVED ISSUES

- Assessing risk: \(E \{\log(\$)\} \)
- Why not change the distribution to assess?
- Playing to affect the deck
- Real casino: deck isn’t random, multiple players, multiple hands, etc.