Problem Reduction

Sipser Ch 5.1

Theorem (Sipser, Theorem 5.2). The language

\[E_{\text{TM}} = \{ \langle M \rangle : M \text{ is a TM and } L(M) = \emptyset \} \]

is undecidable.

Proof. (Sipser reduces from \(A_{\text{TM}}\) but we’ll reduce from \(HALT_{\text{TM}}\) instead.) Suppose \(E_{\text{TM}}\) is decidable and let \(R\) be a TM that decides it. We’ll construct a TM \(S\) to decide \(HALT_{\text{TM}}\), which will give the desired contradiction since \(HALT_{\text{TM}}\) is known to be undecidable. Recall that \(HALT_{\text{TM}}\) is the language

\[\{ \langle M, w \rangle : M \text{ is a TM and } M \text{ halts on input string } w \} \]

Our TM \(S\) works as follows.

\(S=\) “On input \(\langle M, w \rangle\):

1. Construct an encoding \(\langle M_w \rangle\) of a TM \(M_w\) that works as follows.

 \(M_w=\) ‘On input \(x\):

 (a) If \(x \neq w\), loop.

 (b) If \(x = w\), run \(M\) on \(w\). If \(M\) halts, accept.’

2. Run \(R\) on \(\langle M_w \rangle\).

3. If \(R\) accepts, reject. If \(R\) rejects, accept.’

It remains to be shown that \(S\) in fact decides \(HALT_{\text{TM}}\). So suppose \(\langle M, w \rangle\) is an input to \(S\).

First suppose \(M\) halts on \(w\). Then \(M_w\) accepts \(w\); therefore, \(L(M_w) \neq \emptyset\). Hence, \(R\) rejects \(\langle M_w \rangle\). Thus, \(S\) accepts \(\langle M, w \rangle\).

Next suppose \(M\) loops on \(w\). Then \(M_w\) loops on all input; therefore, \(L(M_w) = \emptyset\). Hence, \(R\) accepts \(\langle M_w \rangle\). Thus, \(S\) rejects \(\langle M, w \rangle\).

Therefore, \(S\) decides \(HALT_{\text{TM}}\). \(\square\)
Theorem (Cf. Sipser, Theorem 5.3). The language

\[\text{CFL}_{\text{TM}} = \{ \langle M \rangle : M \text{ is a TM and } L(M) \text{ is a CFL} \} \]

is undecidable.

Proof. By reduction from \(A_{\text{TM}} \). Suppose \(\text{CFL}_{\text{TM}} \) is decidable and let \(R \) be a TM that decides it. We’ll construct a TM \(S \) to decide \(A_{\text{TM}} \), which will give the desired contradiction since \(A_{\text{TM}} \) is known to be undecidable. Recall that \(A_{\text{TM}} \) is the language

\[\{ \langle M, w \rangle : M \text{ is a TM and } M \text{ accepts input string } w \} \]

Our TM \(S \) works as follows.

\(S = \) “On input \(\langle M, w \rangle \):

1. Construct an encoding \(\langle M_w \rangle \) of a TM \(M_w \) such that

\(M_w = \) ‘On input \(x \):

(a) If \(x \) has the form \(yy \), where \(y \in \Sigma^* \), accept.

(b) If \(x \) does not have that form, run \(M \) on \(w \). If \(M \) accepts \(w \), accept. If \(M \) rejects \(w \), reject.’

2. Run \(R \) on \(\langle M_w \rangle \).

3. If \(R \) accepts, accept. If \(R \) rejects, reject.’

It remains to be shown that \(S \) in fact decides \(A_{\text{TM}} \). So suppose \(\langle M, w \rangle \) is an input to \(S \). First suppose \(M \) accepts \(w \). Then \(M_w \) accepts all input, i.e., \(L(M_w) = \Sigma^* \), certainly a context free language. Hence, \(R \) accepts \(\langle M_w \rangle \). Thus, \(S \) accepts \(\langle M, w \rangle \).

Next suppose \(M \) does not accept \(w \), i.e., \(M \) either rejects or loops on \(w \). In either case, \(L(M_w) = \{ yy : y \in \Sigma^* \} \), a non-context free language. Hence, \(R \) rejects \(\langle M_w \rangle \). Thus, \(S \) rejects \(\langle M, w \rangle \).

Therefore, \(S \) decides \(A_{\text{TM}} \). \(\square \)
Theorem. The language

\[F_{\text{FINITE}} = \{ \langle M \rangle : M \text{ is a TM and } L(M) \text{ is finite} \} \]

is undecidable.

Proof. By reduction from \(A_{\text{TM}} \). Suppose \(F_{\text{FINITE}} \) is decidable and let \(R \) be a TM that decides it. We'll construct a TM \(S \) to decide \(A_{\text{TM}} \), which will give the desired contradiction since \(A_{\text{TM}} \) is known to be undecidable. Our TM \(S \) works as follows. \(S= \) “On input \(\langle M, w \rangle \):

1. Construct an encoding \(\langle M_w \rangle \) of a TM \(M_w \) such that
 \(M_w = \) "On input x:
 (a) Run \(M \) on \(w \). If \(M \) accepts \(w \), accept. If \(M \) rejects \(w \), reject.'

2. Run \(R \) on \(\langle M_w \rangle \).

3. If \(R \) accepts, reject. If \(R \) rejects, accept.”

It remains to be shown that \(S \) in fact decides \(A_{\text{TM}} \). So suppose \(\langle M, w \rangle \) is an input to \(S \). First suppose \(M \) accepts \(w \). Then \(M_w \) accepts all input, i.e., \(L(M_w) = \Sigma^* \), an infinite language. Hence, \(R \) rejects \(\langle M_w \rangle \). Thus, \(S \) accepts \(\langle M, w \rangle \).

Next suppose \(M \) does not accept \(w \), i.e., \(M \) either rejects or loops on \(w \). In either case, \(L(M_w) = \emptyset \), a finite language. Hence, \(R \) accepts \(\langle M_w \rangle \). Thus, \(S \) rejects \(\langle M, w \rangle \).

Therefore, \(S \) decides \(A_{\text{TM}} \). \(\square \)
Theorem. The language

\[\text{DECIDER}_{\text{TM}} = \{ \langle M \rangle : \text{TM } M \text{ is a decider} \} \]

is undecidable.

Proof. By reduction from \(\text{HALT}_{\text{TM}} \). Suppose \(\text{DECIDER}_{\text{TM}} \) is decidable and let \(R \) be a TM that decides it. We’ll construct a TM \(S \) to decide \(\text{HALT}_{\text{TM}} \), which will give the desired contradiction since \(\text{HALT}_{\text{TM}} \) is known to be undecidable. Our TM \(S \) works as follows.

\(S \) = “On input \(\langle M, w \rangle \), where \(M \) is a TM and \(w \) is a string:

1. Construct an encoding \(\langle M_w \rangle \) of a TM \(M_w \) that works as follows.

 \(M_w = \) ‘On input string \(x \):

 (a) If \(x \neq w \), accept.

 (b) If \(x = w \),

 i. Run \(M \) on \(w \).

 ii. If \(M \) accepts, accept. If \(M \) rejects, reject.’

2. Run \(R \) on \(\langle M_w \rangle \).

3. If \(R \) accepts, accept. If \(R \) rejects, reject.”

It remains to be shown that \(S \) in fact decides \(\text{HALT}_{\text{TM}} \). So suppose \(\langle M, w \rangle \) is an input to \(S \).

First suppose \(M \) halts on \(w \). Then \(M_w \) halts on all input \(x \). Therefore, \(M_w \) is a decider. Hence, \(R \) accepts \(\langle M_w \rangle \). Thus, \(S \) accepts \(\langle M, w \rangle \).

Next suppose \(M \) loops on \(w \). Then \(M_w \) loops on some input, specifically, it loops on \(w \). So \(M_w \) is not a decider. Hence, \(R \) rejects \(\langle M_w \rangle \). Thus, \(S \) rejects \(\langle M, w \rangle \).

Therefore, \(S \) decides \(\text{HALT}_{\text{TM}} \). \(\square \)