Parity Party with Picture Proofs

Erick Knight, David Wolfe
In how many ways can you place checkers on an $n \times n$ checkerboard so that each square is adjacent to an odd number of checkers?

Sources:
P05 from Halici’s 2006 puzzleup.com where $n = 8$
P192 from Vaderlind, Guy, Larson, *The Inquisitive Problem Solver*
Top row determines later rows

So there can be at most 2^n solutions.
Change odd to even
Parity adds!
2^n SOLUTIONS!
\(m \times n \) for \(m < n \)

solutions to \(m \times n \) match
solutions to \((n - m - 1) \times n \)
$m \times n$

$2^{\gcd(m+1,n+1)} - 1$ solutions
Back to odd
Odd problem: parity still adds!

Either 0 or $2^{\gcd(m+1,n+1)-1}$ solutions
Odd problem

- There must be an even number of checkers.
- Hence, if the even problem has a solution with an odd number of checkers, then the odd problem has no solution.
If \(m \) and \(n \) are odd and end in an equal number of binary 1s, then there are no odd solutions.

\[
m = 1011 \quad n = 10011
\]

Why? If \(d = \gcd(m + 1, n + 1) - 1 \), then \(d, \frac{m+1}{d+1}, \frac{n+1}{d+1} \) are all odd.
Summary

even problem ⇒ $2^{\text{gcd}(m+1,n+1)-1}$ solutions

odd problem ⇒ $\begin{cases} 0 \text{ solutions} & \text{if } m \text{ and } n \text{ equal oddness} \\ 2^{\text{gcd}(m+1,n+1)-1} & \text{otherwise} \end{cases}$†

†We now need to prove that there exists a solution!
$m \times n$ ODD PROBLEM
$n \times n$ EVEN: INVERT AND INSERT

Base cases:
Case: m or n even

WLOG,

\(m \) even

\(n \) odd or \(n \geq m \)

\(n > m \)

\(n = m \) or \(n = m - 1 \)

\(n < m - 1 \)

\(n \) odd
$m \times 2m$, m ODD: INVERT, “HALVE” AND INSERT

$m \times 2m + 1$ BOARD HAS 2^m SOLUTIONS
$m \times 2m$ BASE CASES

Frame

Base cases
Case: m and n odd

WLOG, $m < n$ with $o(m) \neq o(n)$

To prove: unequal oddness preserved
IF \(o(m) \neq o(n) \) THEN

\[
\begin{cases}
 o(m) \neq o(n - 2m - 2) \\
 o(m) \neq o(2m - n)
\end{cases}
\]

\[m\] ends 0111

\[2m\] ends 01110

\[2m + 2\] ends 10000

\[
\begin{array}{c|c}
 n & \text{???} \\
 \hline
 -2m - 2 & -10000 \\
 \hline
 0111
\end{array}
\]

\[
\begin{array}{c|c}
 2m & 01110 \\
 \hline
 -n & -???? \\
 \hline
 0111
\end{array}
\]
Summary

even problem $\Rightarrow 2^{\gcd(m+1,n+1)-1}$ solutions

odd problem $\Rightarrow \begin{cases}
0 \text{ solutions} & \text{if } m \text{ and } n \text{ equal oddness} \\
2^{\gcd(m+1,n+1)-1} & \text{otherwise}
\end{cases}$