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Chapter 1

Geometry and the
Axiomatic Method

The development of the axiomatic method of reasoning was one |
the most profound events in the history of mathematics. In th
chapter we explore axiomatic systems and their properties.

One strand running through the chapter is the search for tl
“ideal”. The golden ratio is the ideal in concrete form, realize
through natural and man-made constructions. Deductive reasonir
from a base set of axioms is the ideal in abstract form, realized :
the crafting of clear, concise, and functional definitions, and in tl
reasoning employed in well-constructed proofs.

Another strand in the chapter, and which runs through the enti:
text, is that of the interplay between the concrete and the abstrac
As you work through this text, you are encouraged to “play” wit
concrete ideas, such as how the Golden Ratio appears in nature, b
you are also encouraged to play (experiment) when doing proofs ar
more abstract thinking. The experimentation in the latter is of tl
mind, but it can utilize many of the same principles of exploratic
as you would use in a computer lab. When trying to come up wit
a proof you should consider lots of examples and ask “What if ...’
questions. Most importantly, you should ¢nteract with the idea

1
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2 CHAPTER 1. AXIOMATIC METHO

just as you interact with a computer lab project.

Student interaction with ideas and discovery of concepts is
primary organizing principle for the text. Interaction is encourage
in three ways. First, topics are introduced and developed in tl
text. Next, lab projects reinforce concepts, or introduce relate
ideas. Lastly, project results are discussed, and conclusions draw
in written lab reports. You will first read about concepts and he:
them discussed in class. Then, you will conduct ”experiments”
make the ideas concrete. Finally, you will conceptualize ideas |
re-telling them in project reports.

The work you do in the lab and in group projects is a critic
component of the course. The projects that are designed to be dor
in groups have an additional pedagogical advantage. You will fir
that by speaking with other students, using mathematical terms ar
concepts, you will better internalize such concepts and make the
less abstract.

Notes on Lab Projects

The main difficulty you will face with the first lab project will be
learning the functionality of the Geometry FExplorer program. O
major point to watch out for is the notion of “attaching” objec
together when doing their construction. For example, when yc
create a point on top of a line, the point becomes attached to tl
line. That is, when the point is moved it is constrained to follow tl
line.

In order to help with the formatting of lab reports there is
sample lab report for a “fake” lab on the Pythagorean Theorem
appendix A of this guide.
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Solutions to Exercises in Chapter 1

1.3 Project 1 - The Ratio Made of Gold

1.3.1 Since AB = 2, we have that % = 1+27\/5 Solve for x and cle:
the denominator of radicals.

1.3.3 Have some fun with this one, but do not get carried aw:
with this idea and spend the whole class period on it!

1.4 The Rise of the Axiomatic Method

In this section we focus on reasoning in mathematics. The prol
lems in this section may seem quite distant from the geometry yc
learned in high school, but the goal is to practice reasoning from tl
definitions and properties that an axiomatic system posits and the
argue using just those basic ideas and relationships. This is goc
mental training. It is all too easy to argue from diagrams whe
trying to justify geometric statements.

1.4.1 If dictionaries were not circular, there would need to be ¢
infinite number of different words in the dictionary.

1.4.3 Let a set of two different flavors be called a pairing. Su
pose there were m children and n > m pairings. By Axiom 2 evei
pairing is associated to a unique child. Thus, for some two pairing
Py,P> there is a child C' associated to both. But this contradic
Axiom 3. Likewise, if m > n, then by Axiom 3 some two childre
would have the same pairing. This contradicts Axiom 2. So, m =
and, since the number of pairings is 4 + 3+ 2+ 1 = 10, there are |
children.

1.4.5 There are exactly four pairings possible of a given flave
with the others. By exercise 1.4.3 we know that there are fo
distinct children associated to these pairings.

1.4.7 By Axioms 2 and 4 we have ex = (zz~ 1) = z(z7'2). S
all we need to do is show that x7'x = e. Now, (z712)(z 12)
P e
Then, yy = y and yyy~

ex =z~ 'z, by Axioms 2, 3, and 4. Let y = 2~ 1.

I = yy~! by Axiom 4. So, y = e by Axion
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3 and 4 and the proof is complete. Note: This proof is a bit trick
— you may want to first experiment with zz~!.

1.4.9 First we show that 1 € M. By Axiom 4 we know 1 is n
the successor of any natural number. In particular, it cannot be
successor of itself. Thus, 1’ # 1 and 1 € M. Now, suppose x € I
That is, 2’ # x. By Axiom 3 we have that (2')’ # 2/, and so 2/ € D
Both conditions of Axiom 6 are satisfied and thus M = N.

1.4.11 Given z, let M = {y|z + y is defined}. Then, by de
nition 1 € M. Suppose y € M. Then, x + 3" = (x + y) is define
and yy € M. So, M = N by Axiom 6. Now, since x was chose
arbitrarily, addition is defined for all x and y.

1.4.13 This is a good discussion question. Think about the ro
of abstraction versus application in mathematics. Think about ho
abstraction and application cross-fertilize one another.

1.5 Properties of Axiomatic Systems

This is a “meta” section. By this is meant that we are studyir
properties of axiomatic systems themselves, considering such sy
tems as mathematical objects in comparison to other systems. Th
may seem quite foreign territory to you, but have an open mir
and think about how one really knows that mathmeatics is true
logically consistent. We often think of mathematics as an ancie
subject, but in this section we bring in the amazing results of tl
twentieth century mathematician Kurt Godel.

If this topic interests you, you may want to further researc
the area of information theory and computability in computer sc
ence. A good reference here is Gregory Chaitin’s book The Lima
of Mathematics (Springer, 1998.) Additionally, much more could 1
investigated as to the various philosophies of mathematics, in pa
ticular the debates between platonists and constructionists, or b
tween intuitionists and formalists. A good reference here is Edna |
Kramer’s The Nature and Growth of Modern Mathematics (Princ
ton, 1981), in particular Chapter 29 on Logic and Foundations.
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1.5.1 Let S be the set of all sets which are not elements
themselves. Let P be the proposition that “S is an element of itself
And consider the two propositions P and the negation of P, whic
we denote as —P. Assume P is true. Then, S is an element of itsel
So, S is a set which by definition is not an element of itself. So, —
is true. Likewise, if =P is true then P is true. In any event we g
P and —P both true, and the system cannot be consistent.

1.5.3 Good research books for this question are books on tl
history of mathematics. This could be a good final project idea.

1.5.5 Let P be a point. Each pairing of a point with P is ass
ciated to a unique line. There are exactly three such pairings.

1.5.7 Yes. The lines and points satisfy all of the axioms.

1.5.9 If (x,y) is in P, then x < y. Clearly, y < x is impossib
and the first axiom is satisfied. Also, inequality is transitive ¢
numbers so the second axiom holds and this is a model.

1.6 Euclid’s Axiomatic Geometry

In this section we take a careful look at Euclid’s original axiomat
system. We observe some of its inadequacies in light of our mode
“meta” understanding of such systems, and discuss the one axio:
that has been the creative source of much of modern geometry — tl
Parallel Postulate.

1.6.1 Good research books for this question are books on tl
history of mathematics.

1.6.3 An explanation can be given based on a figure like tl
following;:
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a b
Figure 1.1:

1.6.5

123 = 3-36+15
36 = 2-1546
15 = 2643

6 = 2-340

Thus, ged(123,36) = 3.

1.6.7 This exercise is a good starting off point for discussing tl
importance of definitions in mathematics. One possible definitic
for a circle is:

Definition 1.1. A circle with center O and radius length r is tl
set of points P on the sphere such that the distance along the gre:
circle from O to P is r.

Note that this definition is itself not entirely well-defined, as v
have not specified what we mean by distance. Here, again, is a goc
opportunity to wrestle with the “best” definition of distance. F
circles of any radius to exist, distance must be defined so that
grows without bound. Thus, one workable definition is for distan
to be net cumulative arclength along a great circle as we move fro
a point O to a point P.
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An angle ABC can be most easily defined as the Euclidean ang
made by the tangent lines at B to the circles defining j@ and E

Then, Postulate 1 is satisfied as we can always construct a gre:
circle passing through two points on the sphere. If the points a
antipodal, we just use any great circle through those points. Othe
wise, we simply intersect the sphere with the plane through the tv
points and the center of the sphere.

Postulate 2 is satisfied as we can always extend an arc of a gre:
circle, although we may retrace the existing arc.

Postulate 3 is satisfied if we use the cumulative distance defin
tion as discussed above.

Postulate 4 is automatically satisfied as angles are Euclides
angles.

Postulate 5 is not satisfied, as every pair of lines intersects. A
easy proof of this is to observe that every line is uniquely defined &
a plane through the origin. T'wo non-parallel planes will intersect :
a line, and this line must intersect the sphere at two points.

1.6.9 This is true. Use a plane argument. Given a plane throug
the origin, we can always find an orthogonal plane. The angle the;
planes make will equal the angle of the curves they define on tl
sphere, as the spherical angles are defined by tangent lines to tl
sphere, and thus lie in the planes.

1.6.11 Yes. An example is the triangle that is defined in tl
first octant by intersecting the sphere with each of the three positi
coordinate axes. This triangle has three right angles.

1.7 Project 2 - A Concrete Axiomatic System

After the last few sections dealing with abstract axiomatic system
this lab is designed so that you can explore another geometric syste
through concrete manipulation of the points, lines, etc of that sy
tem. The idea here is to have you explore the environment first, the
make some conjectures about what is similar and what is differe:
in this system as compared to standard Euclidean geometry.
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1.7.1 You should report the results of your experiments her
You do not yet have the tools to prove these results, but you shou
provide evidence that you have fully explored each idea.

For example, you could report that you tried to construct a rec
angle, but were unsuccessful in doing so. You may discover that
you construct a four-sided figure with three right angles, the fourt
angle is always less than ninety degrees.

The sum of the angles in a triangle will be less than 180 degree

Fuclid’s construction of an equilateral triangle is valid in hype
bolic geometry. Again, you should provide experimental eviden
for this.

Finally, the perpendicular to a line through a point not on tl
line is a valid construction. Here, it is enough for you to experime:
with the built-in perpendicular construction tool to create a ne
line that always stays perpendicular to a given line.
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Chapter 2

Euclidean Geometry

In this chapter we start off with a very brief review of basic propertis
of angles, lines, and parallels.

Solutions to Exercises in Chapter 2

2.1 Angles, Lines, and Parallels

This section may be the least satisfying section in the chapter f
you, since many theorems are referenced without proof. These r
sults were (hopefully) covered in great detail in your high scho
geometry course and we will only briefly review them. A full ar
consistent development of the results in this section would ente
a “filling in” of many days foundational work based on Hilbert
axioms.

A significant number of the exercises in this section deal wit
parallel lines. This is for two reasons. First of all, historically the
was a great effort to prove Euclid’s fifth Postulate by converting
into a logically equivalent statement that was hoped to be easier
prove. Thus, many of the exercises nicely echo this history. Se
ondly, parallels and the parallel postulate are at the heart of or
of the greatest revolutions in math—the discovery of non-Euclides

9
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geometry. This section foreshadows that development, which is co
ered in Chapters 7 and 8.

2.1.1 It has already been shown that /FBG = /DAB. Also, t
the vertical angle theorem (Theorem 2.3) we have ZFBG = ZEB
and thus, ZDAB = /EBA.

Now, /DAB and ZCAB are supplementary, thus add to tw
right angles. Also, Z/CAB and ZABF are congruent by the fir
part of this exercise, as these angles are alternate interior angle
Thus, ZDAB and ZABF add to two right angles.

2.1.3.a False, right angles are defined solely in terms of congr
ent angles.

2.1.3.b False, an angle is defined as just the two rays plus tl
vertex.

2.1.3.c True. This is part of the definition.

2.1.3.d False. The term “line” is undefined.

2.1.5 Proposition I-23 states that angles can be copied. Let
and B be points on [ and n respectively and let m be the line throug
A and B. If t = m we are done. Otherwise, let D be a point on
that is on the same side of n as [. (Assuming the standard properti
of betweenness) Then, ZBAD is smaller than the angle at A forme
by m and n. By Theorem 2.9 we know that the interior angles at
and A sum to two right angles, so ZCBA and ZBAD sum to le
than two right angles. By Euclid’s fifth postulate ¢ and [ must mee

2.1.7 First, assume Playfair’s Postulate, and let lines [ and i
be parallel, with line ¢ perpendicular to [ at point A. If ¢ does n
intersect m then, ¢ and [ are both parallel to m, which contradic
Playfair. Thus, ¢ intersects m and by Theorem 2.9 ¢ is perpendicul:
at this intersection.

Now, assume that whenever a line is perpendicular to one of tw
parallel lines, it must be perpendicular to the other. Let [ be a lir
and P a point not on [. Suppose that m and n are both parallel tc
at P. Let t be a perpendicular from P to [. Then, t is perpendicul:
to m and n at P. By Theorem 2.4 it must be that m and n a
coincident.
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2.1.9 Assume Playfair and let lines m and n be parallel to lir
[. If m # n and m and n intersect at P, then we would have tw
different lines parallel to I through P, contradicting Playfair. Thu
either m and n are parallel, or are the same line.

Conversely, assume that two lines parallel to the same line a;
equal or themselves parallel. Let [ be a line and suppose m and
are parallel to [ at a point P not on [. Then, n and m must be eque
as they intersect at P.

2.2 Congruent Triangles and Pasch’s Axiom

This section introduces many results concerning triangles and al;
discusses several axiomatic issues that arose from Euclid’s treatmen
of triangles.

2.2.1 Yes, it could pass through points A and B of AABC.
does not contradict Pasch’s axiom, as the axiom stipulates that tl
line cannot pass through A, B, or C.

2.2.3 No. Here is a counter-example.

Figure 2.1:

2.2.5 If A = C we are done. If A, B, and C are collinear, the
B cannot be between A and C, for then we would have two poin
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of intersection for two lines. If A is between B and C, then [ canng
intersect AC'. Likewise, C' cannot be between A and B.

If the points are not collinear, suppose A and C are on opposi
sides. Then [ would intersect all three sides of AABC, contradictir
Pasch’s axiom.

2.2.7 Let ZABC =~ /ACB in AABC. Let AD be the ang
bisector of ZBAC meeting side BC at D. Then, by AAS, ADB
and ADC A are congruent and AB = AC.

2.2.9 Suppose that two sides of a triangle are not congruen
Then, the angles opposite those sides cannot be congruent, as if the
were, then by the previous exercise, the triangle would be isoscele

Suppose in AABC that AC is greater than AB. On AC we cz
find a point D between A and C such that AD = AB. Then, ZAD
is an exterior angle to ABDC' and is thus greater than Z/DC B. Bu
AABD is isosceles and so ZADB = /ZABD, and ZABD is great
than ZDCB = ZACB.

2.2.11 Let AABC and AXY Z be two right triangles with rigl
angles at A and X, and suppose BC 2 Y Z and AC = XZ. Suppo:
AB is greater than XY . Then, we can find a point D between A ar
B such that AD = XY . By SAS AADC = AXY Z. Now, /BDC
exterior to AADC and thus must be greater than 90 degrees. Bu
ACDB is isosceles, and thus ZDBC must also be greater than ¢
degrees. This is impossible, as then AC DB would have angle su
greater than 180 degrees.
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B Y
D
A C X z
Figure 2.2:

2.3 Project 3 - Special Points of a Triangle

You are encouraged to explore and experiment in this lab projec
Are there any other sets of intersecting lines that one could constru
for a given triangle? Are there interesting properties of constructe
intersecting lines in other polygons?

2.3.1 ADGB and ADGA are congruent by SAS, as are AEG
and AEGC. Thus, AG = BG = CG. By SSS AAFG = ACF
and since the angles at F' must add to 180 degrees, the angles at
must be congruent right angles.

2.3.3 The angle pairs in question are all pairs of an exteric
angle and an interior angle on the same side for a line falling on tw
parallel lines. These are congruent by Theorem 2.9.

Since Z/DAB, /BAC, and ZCAFE sum to 180 degrees, ar
/BDA, /BAD, and ZABD sum to 180 then, using the congr
ences shown in the diagram, we get that /DBA = /BAC'. Lik
wise, ZBAD = ZABC. By ASA we get that AABC = ABAI
Similarly, AABC = ACEA and AABC =2 AFCB.

2.3.5 Let fﬁ and /ﬁ define an angle and let zﬁ be the b
sector. Drop perpendiculars from D to AB and AC, and assun
these intersect at B and C. Then, by AAS, AABD and AACD a
congruent, and BD = CD.

Conversely, suppose D is interior to ZBAC with BD perpendi
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ular to @ and C'D perpendicular to ﬁ . Also, suppose that BD
CD. Then, by the Pythagorean Theorem AB? + BD? = AD? ar
AC?+CD? = AD?. Thus, AB = AC and by SSS AABD = AACI
This implies that /BAD = /CAD.

2.4.1 Mini-Project:Area in Euclidean Geometry

This section includes the first “mini-project” for the course. The
projects are designed to be done in the classroom, in groups of thre
or four. Each group should elect a Recorder. The Recorder’s so
job is to outline the group’s solutions to exercises. The summai
should not be a formal write-up of the project, but should give
brief synopsis of the group’s reasoning process.

The main goal for the mini-projects is to have discussion of g
ometric ideas. Through the group process, you can clarify you
understanding of concepts, and help others better grasp abstra
ways of thinking. There is no better way to conceptualize an ide
than to have to explain it to another person.

In this mini-project, you are asked to grapple with the notic
of “area”. The notion of area is not that simple or obvious. Fi
example, what does it mean for two figures to have the same area

2.4.1 Construct a diagonal and use the fact that alternate int
rior angles of a line falling on parallel lines are congruent to genera;
an ASA congruence for the two sub-triangles created in the para
lelogram.

2.4.3 If the figure can be split into triangle pieces that can I
separated into congruent pairs, then, since triangles are polygons,
can be split into congruent pairs of polygonal pieces.

On the other hand, it it can be split into congruent polygon
pieces, then we can split the polygon pieces into triangles, and v
can use SAS repeatedly to generate congruent pairs of triangles.

2.4.5 Use Theorem 2.8 and Exercise 2.4.1.

Project Report

Hidden Assumptions? One hidden assumption is the notion th:
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areas are additive. That is, if we have two figures that are n
overlapping, then the area of the union is the sum of the separa
areas.

2.4.2 Cevians and Area

2.4.7 Since a median is a cevian to a midpoint, then the fractio
in the ratio product of Theorem 2.24 are all equal to 1.

2.4.9 Refer to the figure below. By the previous exercise v
know that 1+2+43 =4+ 5+6 (in terms of areas). Also, since 1 ar
2 share the same base and height we have 3 = 4. Similarly, 1 =
and 5 = 6. Thus, 1 = 6.

Similarly, 2+3+4=14+5+6 will yield 4 =5, and 3+4+5
1454 5 yields 2 = 3. Thus, all 6 have the same area.

Figure 2.3:

2.5 Similar Triangles

As stated in the text, similarity is one of the most useful tools in tl
geometer’s toolkit. It can be used in the definition of the trigons
metric functions and in proofs of theorems like the Pythagores
Theorem.

2.5.1 Since m cuts two sides of triangle at the midpoints, the
by Theorem 2.27, this line must be parallel to the third side B(
Thus ZADE =2 ZABC and ZAED = ZACB. Since the angle at
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is congruent to itself, we have by AAA that AABC and AADE a;
similar, with proportionality constant of %

Figure 2.4:

2.5.3 Let AABC and ADEF have the desired SSS similarif
property. That is sides AB and DE, sides AC and DF, and sid
BC and EF are proportional. We can assume that AB is at lea,
as large as DE. Let G be a point on AB such that AG = DE. L

be the parallel to % through G. Then, ﬁ must interse
fﬁ, as otherwise AC' and would be parallel. By the properti
of parallels, ZAGH = ZABC and ZAHG = ZACB. Thus, AAG.
and AABC' are similar.

Therefore, ﬁ—g = %. Equivalently, % = %. We are give

that 42 = A9 Thus, AH = DF.

Also, 48 = B and 48 = 48 = BY Thus, GH = EF.

By SSS AAGH and ADFEF are congruent, and thus AABC ar
ADEF are similar.
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A
D
G H
E F
B e
Figure 2.5:

2.5.5 Any right triangle constructed so that one angle is co
gruent to ZA must have congruent third angles, and thus the co
structed triangle must be similar to AABC'. Since sin and cos ai
defined in terms of ratios of sides, then proportional sides will ha
the same ratio, and thus it does not matter what triangle one us
for the definition.

2.5.7 If the parallel to Zg does not intersect ﬁ’, then it wou
be parallel to this line, and since it is already parallel to j@ , then t
exercise 2.1.15 and AC would be parallel, which is impossible

By the properties of parallels, /RAP = /RBS and /RPA
/ZRSB. Thus, by AAA ARBS and ARAP are similar. APC(Q) ar
ASBQ are similar by AAA using an analogous argument for two

the angles and the vertical angles at Q.
cp _ CQ _ PQ AP _ AR _ PR CP BQ
Thus, g = 5§ = o8 and 55 = 5 = Sr- S0 Gpgd
CPBS _ BS Anq CPBQAR _ BS AR _ BS AP _ 4
AP .

APCP — " APQCRB — APRB ~— APBS —

2.5.1 Mini-Project: Finding Heights

This mini-project is a very practical application of the notion |
similarity. The mathematics in the first example for finding heig]
is not hard, but the interesting part is the data collection. You w
need to determine how to get the most accurate measurements usir
the materials on hand.
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The second method of finding height is a calculation using tw
similar triangles. The interesting part of this project is to see tl
connection between the mirror reflection and the calculation yc
made in part L.

You should work in small groups with a Recorder, but make su
the Recorder position gets shifted around from project to project.

2.6 Circle Geometry

This section is an introduction to the basic geometry of the circl
The properties of inscribed angles and tangents are the most impo
tant properties to focus on in this section.

2.6.1 Case I: A is on the diameter through OP. Let
mZPBO and = m/ZPOB. Then, g = 180—2«a. Also, nZAOB
180 — 8 = 2au.

Case II: A and B are on the same side of % We can assun
that mZOPB > m/ZOPA. Let mZOPB = o« and mZOPA = |
Then, we can argue in a similar fashion to the proof of the Theore
using a — 3 instead of a + f.

2.6.3 Consider ZAQO where O is the center of the circle throug
A. This must be a right angle by Corollary 2.33. Similarly, ZBQ(
must be a right angle, where O’ is the center of the circle throug
B. Thus, A, @, and B are collinear.

2.6.5 Let AB be the chord, O the center, and M the midpois
of AB. Then AAOM = ABOM by SSS and the result follows.

2.6.7 Consider a triangle on the diagonal of the rectangle. Th
has a right angle, and thus we can construct the circle on this angl
Since the other triangle in the rectangle also has a right angle c
the same side (the diameter of the circle) then it is also inscribed :
the same circle.

2.6.9 Suppose they intersected at another point P. Then, AT B
and AT AP are both isosceles triangles. But, this would imply, &
the previous exercise, that there is a triangle with two angles great
than a right angle, which is impossible.
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2.6.11 Let P and @ be points on the tangent, as shown. The:
/BDT = /BTP, as both are inscribed angles on the same ar
Likewise, ZACT = ZATQ. Since, /BTP =~ /AT(Q (vertical ai

gles), then /BDT = ZACT and the lines j@ and % are paralle

Figure 2.6:

2.6.13 Suppose that the bisector did not pass through the cente
Then, construct a segment from the center to the outside point. B
the previous theorem, the line continued from this segment mu
bisect the angle made by the tangents. But, the bisector is uniqu
and thus the original bisector must pass through the center.

2.7 Project 4 - Circle Inversion and Orthogonality

This section is crucial for the later development of the Poinca:
model of non-Euclidean (hyperbolic) geometry. It is also has son
of the most elegant mathematical results found in the course.

2.7.1 By Theorem 2.32, ZQ2P1P2 = ZQ2Q1P2. Thus, ZPPlQ;
/PQ1Ps. Since triangles APP; Q2 and APQ1 P> share the angle :
P, then they are similar. Thus, £5- = 5%, or (PP)(PP,)
(PQ1)(PQ2).

2.7.3 By similar triangles % = 9T Since OT = r the resu

- OP""
follows.
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Chapter 3

Analytic Geometry

This chapter is a very quick review of analytic geometry. In su
ceeding chapters, analytic methods will be utilized freely.

Solutions to Exercises in Chapter 3

3.2 Vector Geometry

3.2.1 If A is on either of the axes, then so is B and the distan
result holds by the definition of coordinates. Otherwise, A (and £
are not on either axis. Drop perpendiculars from A and B to the :
axis at P and ). By SAS similarity, AAOP and ABOQ are simila
and thus ZAOP = /BOQ), which means that A and B are on tl
same line AQ, and the ratio of BO to AO is k.

3.2.3 The vector from P to @ is in the same direction (or opp
site direction) as the vector v. Thus, since the vector from P to @
Q — 13, we have Q —P= tv, for some real number ¢. In coordinat
we have (z,y) — (a,b) = (tvy,tve), or (z,y) = (a,b) + t(vy,v2).

3.2.5 By exercise 3.2.3 the line through A and B can be re;
resented by the set of points of the form A + ¢(B — A). The
M = %(%T—F B)=A+ %(é—ff) is on the line through A and B, ar
is between A and B. Let A = (x1,y1) and B = (x2,¥32), then tl

21
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distance from A to M is /(5 — %)% + (% — %)%, which is equ
to the distance from B to M.

3.3 Project 5 - Bézier Curves

3.3.1 The derivative to c(t) is ¢(t) = 2B — 24 + 2t(C’ — 2B '+ -
Then ¢ (0) 2B — 2A, which is in the direction of B — A ar
a1 )= 2B 2A+2(C—2B+ A = 2C — 2B, which is in the directic
of C — B.
3.3.3 Similar computation to Exercise 3.3.1

3.4 Angles in Coordinate Geometry

3.4.1 Let A = (cos(a), sin(a)) and B = (cos(3), sin(8)). Then, fro
Theorem 3.11 we have cos(a — ) = A o B, since A and B are un
length vectors. The result follows immediately.

3.4.3 By exercise 3.4.1,

cos(g —(a+pB) = COS(];Z) cos(a + ) + sin( Z90) sin(a+ )]
= sin(a+ B).
Then, use the formula from Exercise 3.4.2 with the term inside c
being (& — a) + (—0).
3.5 The Complex Plane
3.5.1
eel® = (cos() + i sin(8))(cos(¢p) + i sin(e))

= (cos() cos(¢) — sin(0) sin(¢)) + i(cos(#) sin(¢) + sin(6)

= cos(f + ¢) + i sin(0 + ¢)
RICE)

3.5.3 Let 2z = ¢ and w = €® and use Exercise 3.4.1.
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Y

1

3.5.5 The rationalized complex numbers have the form i,

and 1—10 — z%

3.5.7 The line through N,P’, and P can be expressed as N
HP' — N) = (0,0,1) + t(X,Y, Z — 1) = (tX,tY,1 + t(Z — 1)). !
this is a point in the = — y plane, we have that. 1+¢(Z —1) =0, ¢
t =11, Thus, 7(P) = t(X,Y) = 1 (X,Y).

3.5.9 Let z = (x,y) be a point in the complex plane. The

(X,Y,Z) = (& 2y ‘Z|2_1) will get mapped to z from the wor

2P +17 2417 [2[P+1
done in exercises 3.4.5 and 3.4.6.
3.5.11 Since |z — Zg| = |z — 20, the function f(z) = Z h:

the local scale-preserving property. Consider two curves ¢; and «
intersecting at zg, parameterized so that ¢1(0) = c2(0) = zp. The
the angle between their tangents is the argument of ¢} (0) mint
the argument of ¢4(0). Under conjugation, the arguments becon
negative, and thus, the difference in the angles between the conjuga;
curves becomes negative.

3.6 Birkhoff’s Axiomatic System for Analytic Geometr

3.6.1 First, if A is associated to x4 = ta\/dz? + dy?, where A
(z,y) = (x0,y0) +ta(dx,dy), and B is associated to zp in a simil:
fashion, then |z4 —zp| = |[t4 — tg|\/dx? + dy?. On the other han

d(A, B) = \/(tadx — tpdx)? + (tady — tpdy)? = \/dx? + dy?|ts—

3.6.3 Given a point O as the vertex of the angle, set O as tl
origin of the coordinate system. Then, identify a ray O A associate
to the angle 6, with A = (z,y). Let a = ||A]| = \/2% + y2. The
sin?(0) + cos?(0) = (£)% + (4)? = ZHS = 1.

3.6.5 Discussion question. One idea is that analytic geomet:
allows one to study geometric figures by the equations that defir
them. Thus, geometry can be reduced to the arithmetic (algebr:

of equations.
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Chapter 4

Constructions

In this chapter we cover some of the basic Euclidean constructio:
and also have a lot of fun with lab projects. The origami proje:
should be especially interesting, as it is an axiomatic system wit
which you can physically interact and explore.

The third section on constructibility may be a bit heavy and al
stract, but the relationship between geometric constructibility ar
algebra is a fascinating one, especially if you have had some exps
sure to abstract algebra. Also, any mathematically literate persc
should know what the three classical construction problems are, ar
how the pursuit of solutions to these problems has had a profour
influence on the development of modern mathematics.

Solutions to Exercises in Chapter 4

4.1 Euclidean Constructions

4.1.1 Use SSS triangle congruence on AABF and ADGH.
4.1.3 Use the SSS triangle congruence theorem on AADE ar
AABE to show that /FAB = /BAFE.
4.1.5 Use the fact that both circles have the same radius.
4.1.7 Let the given line be [ and let P be the point not on

25
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Construct the perpendicular m to [ through P. At a point Q ¢
m, but not on [, construct the perpendicular n to m. Theorem 2
implies that [ and n are parallel.
= / / 4&
4.1.9 On BA construct A’ such that BA" = a. On BC co
struct C” such that BC' = b. Then, SAS congruence gives AAB'(
congruent to any other triangle with the specified data.

4.2 Project 6 - Euclidean Eggs

4.2.1 The tangent to one of the circles will meet f@ at C at rigl
angles by Theorem 2.36. The tangent to the other circle will al
meet AB at C' at a right angle. Since the perpendicular to jﬁ :
C is unique, the tangents coincide.

4.2.3 The construction steps are implied by the figure.

4.3 Constructibility

4.3.1 Just compute the formula for the intersection.

4.3.3 Reverse the roles of the product construction.

4.3.5 For /3, use a right triangle with hypotenuse 2 and o
side 1. For v/5, use a right triangle with sides of length 1 and 2.

4.3.7 Consider ~. This is less than a.

4.3.9 If a circle of radius r and center (z,y) has = not co
structible, then (z,y+r) and (x,y —r) are non-constructible on tl
circle. We can use the same reasoning if y is not constructible. If tl
center is constructible, then the previous exercise gives at least tw
non-constructible points for a circle of radius » whose center is at tl
origin. Add (x,y) to these two points to get two non-constructib
points on the original circle.

4.4 Mini-Project: Origami Construction

For this project, one will need a good supply of square paper. Con
mercial origami paper is quite expensive. Equally as good paper ce
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be made by taking notepads and cutting them into squares using
paper-cutter. (Cutting works best a few sheets at a time)

4.4.1 Given AB, we can fold A onto B by axiom O2. Let
be the fold line of reflection created, and let [ intersect AB at (
Then, since the fold preserves length, we have that AC = CB, ar
/JACE = /ECB, as show in Fig. 4.1. The result follows.

Figure 4.1:

4.4.3 Since the reflection fold across ¢ preserves length, we hax
PR = P'R. Also, the distance from a point to a line is measure
along the perpendicular from the point to the line. Thus, the di
tance from R to [ is equal to P’R. Thus, the distance from R to
equals the distance from R to [ and R is on the parabola with foc
P and directrix .

An interesting result related to this construction would be f
show that ¢ is tangent to the parabola at R. One proof is as follow

Suppose t intersected at another point R’ on the parabola. The:
by definition, R must have been constructed in the same way th:
R was, so there must be a folding (reflection) across ¢ taking P 1

some point P” on [ such that P”R’ is perpendicular to [ at P, ar
intersects ¢t at R’. Then, by a triangle argument, we can show th:

/ ;/ : / 3
PP’ and PP"” must both be perpendicular to ¢t at R and R'. Sin
perpendiculars are unique, we must have that R = R'.

<
(To show, for example, that PP’ is perpendicular to ¢t at R, v
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can easily show that APQR = AP'QR by using the angle- ar
distance-preserving properties of reflections, and then use a secor

congruent triangle argument to show that PP’ crosses t at rig]
angles.)
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Chapter 5

Transformational
Geometry

In this chapter we make great use of functional notation and som
what abstract notions such as 1 —1 and onto, inverses, compositio:
etc. You may wonder how such computations are related to g
ometry, but that is the very essence of the chapter—that we ca
understand and investigate geometric ideas with more than one s
of mathematical techniques.

With that in mind, we will make use of synthetic geometric tecl
niques where they are most elegant and can aid intuition, and :
other times we will rely on analytical techniques.

Solutions to Exercises in Chapter 5

5.1 Euclidean Isometries

5.1.1 Define the function f~! by f~1(y) = x if and only if f(z) =
Then, f~! is well-defined, as suppose f(z1) = f(z2) = y. The
since f is 1 — 1 we have that x1 = x9. Since f is onto, we hax
that for every y in S there is an z such that f(z) = y. Thu
f~1 is defined on all of S. Finally, f~1(f(x)) = f~(y) = = ar

29
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() = f(z) =y. So, fo fh=f"lof=ids.

Suppose g was another function on S such that fog = gof =id
Then, gofoft=f1 org=fL

5.1.3 Since g o f~lofog=g log=idand fogog lof~!
foft=id thengtoft=(fog) ™"

5.1.5 Let T be an isometry and let ¢ be a circle centered at O
radius r = OA. Let O’ =T(0) and A’ = T'(A). Let P be any poi
on ¢. Then, O'T(P) = T(O)T(P) = OP = r. Thus, the image of
under T is contained in the circle centered at O’ of radius r. Let I
be any other point on the circle centered at O’ of radius r. The
OT—Y(P") =T-YO"T~Y(P') = O'P' = r. Thus, T~'(P') is a poi
on ¢ and every such point P’ is the image of a point on ¢, under t}
map 7T

5.1.7 Label the vertices of the triangle A, B, and C. The
consider vertex A. Under an isometry, consider the actual positic
of A in the plane. After applying the isometry, A might rema
or be replaced by one of the other two vertices. Thus, there a;
three possibilities for the position occupied by A. Once that verte
has been identified, consider position B. There are now just tw
remaining vertices to be placed in this position. Thus, there are
maximum of 6 isometries. We can find 6 by considering the thre
basic rotations by 0, 120, and 240 degrees, and the three reflectio
about perpendicular bisectors of the sides.

5.1.9 First, we show that 7T is a transformation. To show it
1 — 1, suppose T(z,y) = T(2',y"). Then, kx + a = ka’ + a ar
ky+b=ky +b. So,x=12"and y =1/ .

To show it is onto, let (2/,4) be a point. Then, T(“’C/k_“,
(a',y).

T is not, in general, an isometry, since if A = (z,y) and B
(«',y') then T(A)T'(B) = kAB.

5.1.11 Let ABC be a triangle and let A’B’C” be its image und
T. By the previous exercise, these two triangles are similar. Thu
there is a k > 0 such that A’'B’ = kAB, B'C' = kBC, and A'C’
kAC. Let D be any other point not on AB. Then, using triangl

‘b
=)
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ABD and A'B'D’ we get that A'D" = kAD.

Now, let DE be any segment with D not on /ﬁ Then, usir
triangles ADE and A'D'E’" we get D'E’ = kDFE, since we know th:
A'D' = kAD.

Finally, let EF be a segment entirely on jﬁ, and let D be
point off AB. Then, using triangles DEF and D'E’'F’" we get E'F’
kEF, since we know that D'E' = kDE.

Thus, in all cases, we get that T(A)T(B) = kAB.

5.2.1 Mini-Project:Isometries Through Reflection

In this mini-project, you will be led through a guided discovery
the amazing fact that, given any two congruent triangles, one ca
find a sequence of at most three reflections taking one triangle
the other.

5.2.1 First of all, suppose that C' and R are on the same side
f@. Then, since there is a unique angle with side AB and measu:
equal to the measure of ZBAC, then R must lie on @ . Likewis
R must lie on % But, the only point common to these two ra;
is C. Thus, R =C.

If C' and R are on different sides of f@ , then drop a perpendi
ular from C' to jﬁ, intersecting at P. By SAS, APAC and APA
are congruent, and thus ZAPR must be a right angle, and R is tl
reflection of C across ﬁ

5.2.3 If two triangles (AABC and APQR) share no point
common, then by Theorem 5.6 there is a reflection mapping A 1

C, and by the previous exercise, we would need at most two mo:
reflections to map Ar(A)r(B)r(C) to APQR.

5.2.2 Reflections

5.2.5 Many example from nature have bilateral symmetry.
5.2.7 Let G be the midpoint of AB. Then AAED = ABCD 't
SAS and AAGD 2 ABGD by SSS. Thus, DC! is the perpendicul:
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bisector of AB, and reflection across m takes A to B. Also, 5
must bisect the angle at D and by the previous exercise the bisects
is a line of reflection. This proof would be easily extendable f
regular n-gons, for n odd, by using repeated triangle congruences |
show the perpendicular bisector is the angle bisector of the opposi
vertex.

Figure 5.1:

5.2.9 Suppose that a line of symmetry [ for parallelogram ABC'
is parallel to side AB. Then, clearly reflection across [ cannot msz
A to B, as this would imply that [ is the perpendicular bisector |
AB.

If reflection mapped A to C, then [ would be the perpendicul:
bisector of a diagonal of the parallelogram. But, since [ is parall
to AB, this would imply that the diagonal must be perpendicular
AB as well. A similar argument can be used to show that the oth
diagonal (BD) must also be perpendicular to AB. If this were tl
case, one of the triangles formed by the diagonals would have ang
sum greater than 180 degrees, which is impossible.

Thus, reflection across | must map A to D, and [ must be tl
perpendicular bisector of AD. Clearly, using the property of pa
allels, we get that the angles at A and D in the parallelogram a;
right angles.
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5.2.11 Let r be a reflection across jﬁ and let C be a poi
not on jﬁ Then, r(C') is the unique point on the perpendicul:
dropped to z@ at a point P on this line such that CP = r(C)]
with r(C) # C. Now, r(r(C)) is the unique point on this san
perpendicular such that r(C)P = r(r(C))P, with r(r(C)) # r(C
But since r(C)P = CP and C # r(C), then r(r(C)) = C. But, the
r o r fixes three non-collinear points A, B, and C, and so must !
the identity.

5.2.13 Let A and B be distinct points on [. Then, 7, o r;
Tm(Tm(A)) = rm(r1(A)) = rm(A) and likewise, ry, 0107y, (1m (B))
rm(B). Thus, the line I’ through r,,(A) and r,,(B) is fixed by 7,
r; 0 7y, and this triple composition must be equivalent to reflectic
across .

5.2.15 Drop a perpendicular from O to the line intersecting :
@. By SAS we get the length from O to P is the same as the lengt
from O’ to P. Thus, to minimize the total length to V we ju
minimize the length from O’ to P to V. But, the shortest path w
be a straight line, so P must be located so that it is on the lir
through O’ and V. Using congruent triangles and vertical angle
we see that the shortest path occurs when the two angles made
P are congruent.

5.3 Translations

5.3.1 There are few examples in nature that have perfect tran
lational symmetry. One example might be the atoms in a cryst
atomic lattice. But there are some partial examples, like the legs c
a millipede.

5.3.3 Since (rgory)o(ryory) =id, and (ryorg)o(reory) =1
then ro oy is the inverse of 71 ory. Also, if T' has translation vect
v, then T'(z,y) = (z,y) + v. Let S be the translation defined ¥
S(z,y) = (x,y) —v. Then, SoT(z,y) = ((x,y)+v) —v = (x,y) ar
ToS((z,y) —v)+v=(x,y). Thus, S is the inverse to T.

5.3.5 Let 77 have translation vector v; and T5 have translatic
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vector va. Then, Th o Th(z,y) = Ti((z,y) + v2) = (z,y) + (v2 + v
which is the same asT} o T(z,y).

5.3.7 Let (z, K) be a point on the line y = K. If T is a tran
lation with translation vector v = (0, —K), then, by exercise 5.3.
T~! has translation vector of —v = (0, K). Thus, T~ tor,oT(z, K)
T lory(z,0) = T7Yx,0) = (z,K). So, T~ or, oT fixes the li
y = K and so must be the reflection across this line. The coordina
equation for r is given by T-tor, o T(z,y) =T tory(z,y — K)
T Yz, —y+ K) = (z,—y + 2K). So, r(z,y) = (z, —y + 2K).

5.3.9 Let T be a translation with (non-zero) translation vect
parallel to a line [. Let m be perpendicular to [ at point P. L
n be the perpendicular bisector of PT(P), intersecting PT(P) :
point Q. Then, r,, reflection about n maps P to T'(P). Consid
rn 0 T. We have r, o T(P) = P. Let R # P be another poi
on m. Then, PRT(R)T(P) is a parallelogram, and thus ZPRT (I
and ZRT(R)T(P) are right angles. Let S be the point where
intersects RT'(R). Then, ZRS(Q is also a right angle. Also, by
congruent triangle argument, we have RS = ST(R), and so n is tl
perpendicular bisector of RT'(R) and r, o T(R) = R. Since r, o
fixes two points on m we have r, o T =71,,, or T =1, 0 T,.

R S T(R)

' P Q T(P)

Figure 5.2:
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5.4 Rotations

5.4.1 First,

T 'oRotyoT(C) = T 'oRotyoT(x,y)
= T o Roty(0,0)
= T740,0)

= (2,y)
= C

Suppose T~1 o Roty o T fixed another point P. Then, Roty
T(P) = T(P), which implies that T'(P) = (0,0), or P = T1(0,0)
(z,y) = C. Thus, T~! o Roty o T must be a rotation. What is tl
angle for this rotation? Consider a line [ through C' that is parall
to the x-axis. Then, T' will map [ to the x —azis and Roty will me
the z-axis to a line m making an angle of ¢ with the z-axis. The
T~! will preserve this angle, mapping m to a line making an ang
of ¢ with [. Thus, the rotation angle for 7! o Roty o T is ¢.

5.4.3 A book on flowers or diatoms (algae) would be a goc
place to start.

5.4.5 By the preceding exercise, the invariant line must pa
through the center of rotation. Let A be a point on the invarias
line. Then, Rp(A) lies on OA and OA = ORo(A). Either A ar
Ro(A) are on the same side of O or are on opposite sides. If they a
on the same side, then A = Rp(A), and the rotation is the identit
which is ruled out. If they are on opposite sides, then the rotatic
is 180 degrees. If the rotation is 180 degrees, then for every poi
A # O we have that A, O, and Rp(A) are collinear, which mear

that the line &)4 is invariant.

5.4.7 Let R = r; ory, be a rotation about the point P whe
[ and m intersect. Then, since (7] 0 ry,) © (1, 0 1) = id and (1,
7)o (1 0ry) = id, then R~! = r,, o r;, and the angle of rotatic
is the same, but in reverse direction, as the angle is twice the ang
between the lines of reflection.
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5.4.9 Consider R~ o R’. This map fixes O and A and thus fix
OA. So, either R~! o R’ is a reflection or it is the identity. Sin
the composition of two rotations about a common point is again
rotation (by the preceding exercise), then R~! o R’ = id and tl
result follows.

5.4.11 The hint is over-kill. H is clearly a rotation, by tl
definition of rotations. The angle of rotation is twice the angle maxc
by the lines of reflection, or twice a right angle, or 180.

5.4.13 Note that T o Hy o T~! maps T(A) back to itself.
this map fixes any other point P, then H4oT~Y(P) = T~(P), ar
so T7Y(P) = Aor P = T(A). Thus, T o Hy o T™! is a rotatic
about T'(A). Then, any line through 7T'(A) will get mapped to a li1
through A by T—'. Then H4 will map this new line to itself, ar
T will map this half-turned line back to the original line. Thus, t
exercise 5.4.5, T o Ha o T~ is a half-turn about T'(A).

5.5 Project 7 -Quilts and Transformations

This project is another great opportunity for the future teachers
the class to develop similar projects for use in their own teachin
One idea to incorporate into a high school version of the project
to bring into the class the cultural and historical aspects of quiltin

5.5.1 In your Project Report give a report of how you did tl
construction.

5.5.3 For bilateral symmetry, any reflection line must pass throt
the center of the quilt pattern. The only patterns which have suc
symmetry are: 25-Patch Star (horizontal, vertical, 45 degree, ar
—45 degree lines of symmetry) and Flower Basket (45 degree line |
symmetry).

Star Puzzle, Dutch Man’s Puzzle, and 25-Patch Star all hax
rotational symmetry of 90 (and thus 180 and 270) degrees.

Thus, 25-Patch Star is the only pattern with both rotational ar
bilateral symmetry.
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5.6 Glide Reflections

5.6.1 As with translations, it will be hard to find a perfect examp
of a glide symmetry in nature. But, the are many plants who:
branches alternate in a glide fashion.

5.6.3 Suppose m is invariant. Then, the glide reflection ce
be written as G = Tapor; = 10 Tap. If G(G(m)) = m, the
(Tapory)o(rpoTag)(m) =Trap(m) =m. So, m must be parall
or equal to [, if it is invariant under Thap. Suppose m is parall
to l. Then, Typ(m) = m. So, G(m) = r; o Tag(m) = r;(m). Bu
reflection of a line m that is parallel to [ cannot be equal to m. Thu
the only line invariant under the glide reflection is [ itself.

5.6.5 The glide reflection can be written as G = Tup o 1y
rpoTapg. So, GoG = (Tapor))o(roTap)="Thrap-

5.6.7 The set does not include the identity element.

5.6.9 The identity (rotation angle of 0) is in the set. The con
position of two rotations about the same point is again a rotation &
exercise 5.4.8. The inverse to a rotation is another rotation abot
the same point by exercise 5.4.7. Since rotations are functions, a
sociativity is automatic.

5.6.11 A discussion and diagram would suffice for this exercis

5.6.13 By using the result in Exercise 5.2.14 repeatedly, we ca
reduce any even (non-identity) isometry to the product of two r
flections. Also, the identity can be written as the product of tw
reflections, the product of a reflection with itself. An odd isomet:
can be reduced to the product of three or one reflections. Sin
rotations and translations cannot be equivalent transformations
reflections and glide reflections, then an isometry cannot be bot
even and odd.

5.7 Structure and Representation of Isometries

This section is a somewhat abstract digression into ways of re;
resenting transformations and of understanding their structure :
algebraic elements of a group. An important theme of the section
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the usefulness of the matrix form of an isometry, both from a th
oretical viewpoint (classification), as well as a practical viewpoi
(animation in computer graphics).

Matrix methods (and thus transformations) are used heavily °
the field of computer animation. There are many excellent textbool
in computer graphics that one could use as reference for this purpos
For example, the book by F.S. Hill listed in the bibliography of tI
text is a very accessible introduction to the subject.

5.7.1 Let G1 = T}, ory, and G2 = T}, 071, be two glide reflection
If Gy o G2 is a translation, say T, then, since G1 o Gy = T,
(T, oryy) o (ry, 0 Tyyy), then Ty, —y, = 17, 0 17, and thus [y ||ls.

On the other hand, if the lines are parallel, then G1 o G2
(Ty, oryy) o (ry, 0Ty,) =Ty 0Ty, oT,,, for some vector v.

If the lines intersect, then the composition of r;, with 7, will I
a rotation, say R, and G10Gy = (T}, ory,)o(r,0Ty,) = Ty, 0o RoT,
This last composition yields a rotation, by Theorem 5.20.

5.7.3 First, for, o f71(f(m)) = f(m), so f(m) is a fixed li1
for for,of~t. Also, (forpmof™1)?% = forpof tofory,of ™t =i
Thus, for,,of~!, which must be a reflection or glide reflection fro
looking at Table 5.3, is a reflection. Since it fixes f(m) it must 1
reflection across f(m).

5.7.5 Using the previous exercises we have for,, o Tago f~!
formofofoTapo f™ =7sm) 0 Tras(m)-

5.7.7 Rotation of (z, y) by an angle ¢ yields (x cos(¢)—y sin(¢)
y cos(¢)). Multiplying x + iy by cos(¢) + i sin(¢) yields the san
point. Translation by v = (v1,v9) yields (x + vi,y + v2). Addir
v1 + ivg to x + 1y yields the same result. Finally, reflection across
is given by r,(z,y) = (z, —y). Complex conjugation sends x + iy 1
x — 1y. Clearly, this has the same effect.

5.7.9 T,0 Rg(z) = (€’¥2) +v. To find the fixed point set (¢/72)
v = z and solve for z.



“book” — 2011/8/23 — 19:41 — page 39 — #45

SOLUTIONS TO EXERCISES IN CHAPTER 5 :

5.8 Project 8 - Constructing Compositions

The purpose of this lab is to make concrete the somewhat abstras
notion of composition of isometries. In particular, by carrying o
the constructions of the lab, you will see how the conditions c
compositions of rotations found in Table 5.3 arise naturally.

If you have difficulty getting started with the first proof, thir
about how we can write a rotation as the composition of two r
flections through the center of rotation. Note that the choice |
reflection lines is not important — one can choose any two lines :
long as they make the right angle, namely half the desired rotatic
angle.

5.8.1 A rotation can be expressed as the composition of tw
reflections about lines through the center of rotation, as long as tl
reflection lines make an angle of half the reflection angle. Since 1
and n are bisectors of the rotation angles, then, R4 s pap = org
and Rp sABE = T5E © T'ms taking into the account the orientatic
of the rotation angles.

5.8.3 The rotation angle v is twice the angle at O in AAO!
This angle is ZBOA. (Note - positively oriented) Then, taking ca
to measure orientation correctly, we have

v = 2(180 — (/BAO + ZOBA)
= 360+ (2Z0AB + 2/ABO)
= 360+ (LEAB+ /ABE)

Thus, v = (LEAB + ZABE) (mod360).
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Chapter 6

Symmetry

This chapter is quite algebraic in nature—focusing on the differe
discrete symmetry groups that arise for frieze patterns and wallpap
patterns.

Solutions to Exercises in Chapter 6

6.1 Finite Plane Symmetry Groups

6.1.1 Flowers and diatoms make good examples.

6.1.2 The symmetry group is the dihedral group of order
(4 rotations generated by a rotation of 90 degrees, and reflectio:
generated by a reflection across a perpendicular bisector of a sid
This gives 8 symmetries. There are no more, since if we label tl
vertices and fix a position for a vertex to occupy, we have 4 choic
for the vertex to be placed in that position and only two choic
for the rest of the vertices. Thus, a maximum of eight symmetri
possible.

6.1.3 The dihedral group of order 5. (5 rotations generated t
a rotation of 72 degrees, and reflections generated by a reflectic
across a perpendicular bisector of a side) This gives 10 symmetrie
There are no more, since if we label the vertices and fix a positic

41
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for a vertex to occupy, we have 5 choices for the vertex to be place
in that position and only two choices for the rest of the vertice
Thus, a maximum of ten symmetries possible.

6.1.5 Using an argument like that used in exercises 6.1.2 ar
6.1.3, we know there are at most 2n symmetries. Also, by the won
done in section 5.4 we know there are n rotations, generated by
rotation of %, that will be symmetries. Let r be a reflection acro
a perpendicular bisector of a side. This will be a reflection, as w:
all n compositions of this reflection with the n rotations. This givi
2n different symmetries.

6.1.7 The number of symmetries is 2n. The only symmetri
that fix a side are the identity and a reflection across the perpe:
dicular bisector of that side. The side can move to n different side
Thus, the stated product is 2n as claimed.

6.2 Frieze Groups

6.2.1 Since v?> = 7, then < 7,7, H > is contained in < ~, H >
Also, it is clear that < «y, H > is contained in < 7,7+, H >. Thu
<7, H>=<~,H >.

6.2.3 Let 7, and r,/ be two reflections across lines perpendicul:
to m. Then, the composition r, or,, must be a translation, as the
lines will be parallel. Thus, ryor, = T* for some k, and 7, = 7,07

6.2.5 Consider g?. This must be a translation, so g = Ty, f
some k where T, is the fundamental translation. Then, g = Tg ,OTr

where m is the midline. Suppose % is an integer, say % = j. The
since T{,_jy) is in the group, we have T(,_;, o9 = T(v,jv)ngvorm
T, o 1y, is in the group.

Otherwise, % =7+ % for some integer j. We can find T"_;, -
the group such that 7', 0o g = Ty orm is in the group.

6.2.7 The composition r, o r, must be a translation. Also,
Ty 0 1y(A) = 74(A) = C, then the translation vector must be A(
But, the length of AC is twice that of AB. So, we get that 2AB

k'v for some k. Now, either k' is even or it is odd. The resu
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follows.

6.2.9 From Table 4.1 we know that 7 o H or H o 7 is either
translation or a rotation, so it must be either 7% for some k or H
for A on m. Thus, any composition of products of 7 and H can |
reduced ultimately to a simple translation or half-turn, or to son
m7oHpg or Hgo 7j , which are both half-turns. Thus, the subgrou
generated by 7 and H cannot contain 7, or 7, or v and none
< TyTm > O < T,1y > or < T,T., > can be subgroups of < 7, H >
6.2.11 The compositions 7% o r,, or 7, o 7% generate glide r
flections with glide vectors kv. The composition of 7 with suc
glide reflections generates other glide reflections with glide vecto
(k 4+ j)v. The composition of r,, with a glide in the direction
m will generate a translation. Thus, compositions of the thre
types of symmetries—glides, 7,,, and 7% —will only generate syn
metries within those types. Thus, < 7,7 > cannot be a subgrot
of < 7,7, >, since 7 has translation vector of § which cannot 1
generated in < 7,7, >. Also, neither < 7,7, > nor < 7, H > cs
be subgroups of < 7,7, >.

6.2.13 First Row: <7 >, < 7,7 >. Second Row: < 7,7+, H >
< 7,7y >. Third Row: < 7,7r,,,H >, < 7,H >. Last Row:
T, Tm >.

6.3 Wallpaper Groups

6.3.1 The first is rectangular, the second rhombal, and the third
square.

6.3.3 The translation determined by f? will be in the same d
rection as 7', so we do not find two independent directions of tran
lation.

6.3.5 The lattice for G will be invariant under rotations abor
points of the lattice by a fixed angle. By the previous problem, the;
rotations must be half-turns. By Theorem 6.14 the lattice must |
Rectangular, Centered Rectangular, or Square.

6.3.7 Let C be the midpoint of the vector v = A_B, where v is o1
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of the translation vectors for G. Let my be a line perpendicular 1
AB at A. Then, T}, = rp, © Ty Where m/ is a line perpendicular 1

jﬁ at the midpoint of AB. But since r,, is in G, then r,,, 0T, = r,
is in G. Likewise, we could find a line m/, perpendicular to tl
other translation vector w = AC' at its midpoint, yielding anoth
reflection Ty~ The formulas for these two reflections are Tt
Tm, © 1, and Tl = Tmy O Tw.

6.3.9 In the exercise 6.3.8 we saw that the group of symmetri
can be generated from reflections half-way along the translation ve
tors. Thus, if we reflect the shaded region, we must get another pa
of the pattern. Thus, three reflections of the shaded area will fill v
the rectangle determined by v and w and the rest of the pattern w
be generated by translation.

6.3.11 If A = v + mw and B = sv + tw, then 0 < s, <
The length between A and B is the length of the vector B ZA
(s —1)v+ (t —m)w. This length squared is the dot product of B —
with itself, i.e., (s—1)?(vev)+2(s—1)(t—m)(vew)+(t—m)*(wew
If vew > 0, then this will be maximal when both (s—1) and (t—n
are maximal. This occurs when (s —1) =1 and (t — m) = 1, whic
holdsonlyif s=1=tandl =m =0. Ifvew < 0, we need (s—1) 1
be as negative as possible, and (¢ —m) to be as positive as possib
(or vice-versa). In either case, we get values of 0 or 1 for s, t, [, ar
m.

6.3.13 A single straight line would have translational symmetri
of arbitrarily small size.

6.5 Project 9 - Constructing Tessellations

Tiling is a fascinating subject. If you would like to know more abot
the mathematics of tiling, a good supplementary source is Tilin,
and Patterns, by Grunbaum and Shephard.

A modern master of the art of tiling is M.C. Escher. A goc
resource for his work is Doris Schattschnieder’s book M. C. Esche
Visions of Symmetry.
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6.5.1 The symmetry group is p4.
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Chapter 7

Non-Euclidean Geometry

The discovery of non-Euclidean geometry is one of the most impo
tant events in the history of mathematics. The book by Boyer ar
Merzbach and the University of St. Andrews web site, both liste
in the bibliography of the text, are excellent references for a deep
look at this history.

Solutions to Exercises in Chapter 7

In section 7.2 we see for the first time the relevance of our earli
discussion of models in Chapter 1. The change of axioms in Chaj
ter 7 (replacing Euclid’s fifth postulate with the hyperbolic parall
postulate) requires a change of models. As you work through th
section, it is important to recall that, in an axiomatic system, it
not important what the terms actually mean; the only thing th:
matters is the relationships between the terms.

We introduce two different models at this point to help you re
ognize the abstraction that lies behind the concrete expression
points and lines in theses models.

47
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7.2.2 Mini-Project: The Klein Model

It may be helpful to do the constructions (lines, etc) of the Kle
model on paper as you read through the material.

7.2.1 Use the properties of Euclidean segments.

7.2.3 The special case is where the lines intersect at a boundai
point of the Klein disk. Otherwise, use the line connecting the pols
of the two parallels to construct a common perpendicular.

7.3 Basic Results in Hyperbolic Geometry

In this section it is important to note the distinction between poin
at infinity and regular points. Omega triangles share some pro
erties of regular triangles, like congruence theorems and Pasch-lil
properties, but are not regular triangles—thus necessitating the th
orems found in this section.

7.3.1 Use the interpretation of limiting parallels in the Kle
model.

7.3.3 First, if m is a limiting parallel to [ through a point I
then 7(m) cannot intersect [, as if it did, then r?(m) = m wou
also intersect I. Now, drop a perpendicular from r;(P) to [ at (
and consider the angle made by @, 7 (P), and the omega point .
ri(m). If there were another limiting parallel (n) to [ through r;(Z
that lies within this angle, then by reflecting back by r; we wou
get a limiting parallel r;(n) that lies within the angle made by (
P and the omega point of [, which is impossible. Thus, 7;(m) mu
be limiting parallel to [ and reflection maps omega points to omeg
points, as r; maps limiting parallels to [ to other limiting parallel
Also, it must fix the omega point, as it maps limiting parallels ¢
one side of the perpendicular dropped to [ to limiting parallels ¢
that same side.

7.3.5 Let P be the center of rotation and let [ be a line throug
P with the given omega point €2. (Such a line must exist as
must correspond to a limiting parallel line m, and there is always
limiting parallel to m through a given point P) Then, we can wri
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R = r,, or; for another line n passing through P. But, since r; fix
Q, and R does as well, then, 7, must fix Q2. But, if n and [ are n
coincident, then n is not limiting parallel to [ and thus cannot has
the same omega points as [. By the previous exercise, r,, could n
fix Q. Thus, it must be the case that n and [ are coincident and
is the identity.

7.3.7 Let PQf) be an omega triangle and let R be a point interic
to the triangle. Drop a perpendicular from @ to ﬁ at S. The
either R is interior to triangle QPS, or it is on .9, or it is interi
to ZQSQ. 1If it is interior to AQPS it intersects % by Pasch
axiom for triangles. If it is on Q.5 it obviously intersects I
is interior to ZQ.SS), it intersects by the definition of limitir
parallels.

Figure 7.1:

7.3.9 Let [ be the line passing through R. Then, either | pass
within Omega triangle PR or it passes within Q) R€). In either cas
we know by Theorem 7.5 that [ must intersect the opposite side, i.
it must intersect PQ or Qf.

7.3.11 Suppose we had another segment P'Q’ with P'Q)’ = P
and let I’ be a perpendicular to P’Q’ at Q'. Let P'R’ be a limitir
parallel to I’ at P’. Then, by Theorem 7.8, we know that ZQPR
ZQ'P'R’ and thus, the definition of this angle only depends on .
the length of PQ.

7.3.13 Suppose a(h) = a(h') with h # h'. We can assun
that h < h’. But, then the previous exercise would imply th:
a(h) > a(h'). Thus, if a(h) = a(h’) then h = K.
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7.4 Project 10 - The Saccheri Quadrilateral

As you do the computer construction of the Saccheri Quadrilaters
you may experience a flip of orientation for your construction whe
moving the quad about the screen. The construction depends c
the orientation of the intersections of circles and these may switc
as the quad is moved. A construction of the Saccheri quad that dos
not have this unfortunate behavior was searched for unsuccessful
by the author. A nice challenge problem would be to see if you cs
come up with a better construction. If you can, the author wou
love to hear about it!

7.4.1 Show that AADB and ABCA are congruent, and the
show that AADC and ABDC' are congruent.

Figure 7.2:

7.5 Lambert Quadrilaterals and Triangles

7.5.1 Referring to figure 7.6, we know AACB and AACFE are cor
gruent by SAS. Thus, ZACB = /ECA. Since ZACD = /FC|
and both are right angles, then /BCD = /FCFE. Then, ABC
and AFCE are congruent by SAS. We conclude that BD = F
and the angle at F is a right angle.

7.5.3 Create two Lambert quadrilaterals from the Saccheri quac
lateral, and then use Theorem 7.13.

7.5.5 Since the angle at O is acute, then OAA’ and OBB’ a
triangles. Also, since OA < OB, then A is between O and B, ar
likewise A’ is between O and B’. Thus, the perpendicular n at A 1

> _
AA" will enter AOBB’. By Pasch’s axiom it must intersect OB’ ¢
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BB'. Tt cannot intersect OB’ as n and <O_Bz must be parallel. Thu
n intersects BB’ at C. Then, A’/ACB’ is a Lambert Quadrilater
and B'C > A’A. Since C is between B and B’ we have B'B > A’.

7.5.7 Let m be right limiting parallel to [ at P and let P’ I
a point on m to the right of P (i.e. in the direction of the omeg
point). Let @ and Q" be the points on [ where the perpendicula
from P and P’ to [ intersect [.

We claim that mZQPP’ < mZQ'P'R where R is a point on m |
the right of P’. If these angles were equal we would have PQ = P/(
by Exercise 7.3.11, and thus QPP’Q" would be a Saccheri quadr
lateral, which would imply that ZQ'P'R is a right angle, which
impossible. If mZQPP’' > m/Q'P'R, then PQ < P'Q’ by exerci:
7.3.12, which would imply that we could find a point S on P’'Q’ wit
PQ = Q'S, yielding Saccheri quadrilateral PQQ'S. Then, ZPS(
must be acute, which contradicts the Exterior angle theorem f
APSP.

Figure 7.3:

Thus, mZQPP' < mZQ'P'R, and the result follows from exe
cise 7.3.12.

7.5.9 If they had more than one common perpendicular, the
we would have a rectangle.

7.5.11 Suppose Saccheri Quadrilaterals ABC'D and EFGH ha
AB = EF and ZADC = /FEHG. If EH > AD then we can find
on EH and J on FG such that EI = F.J = AD. Then, by repeate
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application of SAS on sub-triangles of ABCD and FIJF we cs
show that these two Saccheri Quadrilaterals are congruent. Bu
this implies that the angles at H and [ in quadrilateral THGJ a
supplementary, as are the angles at G and J, which means that v
can construct a quadrilateral with angles sum of 360. This contr:
dicts Theorem 7.15, by considering triangles created by a diagon
of THGJ.

H
C
| G
E F
A B

Figure 7.4:

7.5.13 No. To construct a scale model, we are really constructir
a figure similar to the original. That is, a figure with correspondir
angles congruent, and length measurements proportional by a no:
unit scale factor. But, Theorem 7.18 implies that any such sca
model must have lengths preserved.

7.6 Area in Hyperbolic Geometry

In this section we can refer back to the mini-project we did on are
in Chapter 2. That discussion depended on rectangles as the bas
for a definition of area. In hyperbolic geometry, no rectangles exis
so the next best shape to base area on is the triangle. This explai
the nature of the theorems in this section.

7.6.1 Let J be the midpoint of @and suppose that ﬁ cu
A"B at some point K # J. Then, on E”.J we can construct a secor
Saccheri Quadrilaﬁgrgl by the method of dropping perpendicula
from B and C to £”.J. Now, BC is the base of the original Sacche
Quadrilateral BC'ITH and the new Saccheri Quadrilateral. Thus, if
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is the perpendicular bisector of BC', then n meets E”F and E".J :
right angles. Since E” is common to both curves, we get a triang
having two right angles, which is impossible.

7.6.3 This question can be argued both ways. If we could mal
incredibly precise measurements of a triangle, then we could po
sibly measure the angle sum to be less than 180. However, sin
the universe is so vast, we would have to have an incredibly lar;
triangle to measure, or incredibly good instruments. Also, we cou
never be sure of errors in the measurement overwhelming the actu
differential between the angle sum and 180.

7.7 Project 11 - Tiling the Hyperbolic Plane

A nice artisitic example of hyperbolic tilings can be found in M. (
Escher’s Circle Limit figures. Consult Doris Schattschnieder’s boc
M. C. Escher, Visions of Symmetry for more information abo
these tilings.

7.7.1 Reasoning as we did on Page 261 of the text, we see th:
if we have k regular n-gons meeting at a common vertex, then

180n < 360 + 2n«o
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where a = %. Then,

360
— > 180 = 360
k n

and dividing by 360 and re-arranging gives

1 1 1
n + k - 2
Thus, since % + % > % we have that a (3, 3) tiling is possible.
7.7.3 In a (6,5) tiling we have regular hexagons meeting 5 :
a vertex. The interior angles of the hexagons must be 3—?) =17
Triangulating such a hexagon by triangles to the center, we see th:
the central angle must be 60 degrees and the base angles of tl
isosceles triangles must be 36 degrees (half the interior angle).
Thus, to build the tiling we start with a triangle of angles 6

36, and 36 and continue the construction just as we did in the lak
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Chapter 8

Non-Euclidean
Transformations

In this chapter we extend our notion of isometry from Euclides
geometry to hyperbolic geometry. The discussion on pages 316-31
is intended to make the subsequent focus on Mobius transformation
a natural condition for carrying out this extension.

Section 8.1 might seem to be a side-track, but it is necessai
groundwork material needed to put the subsequent development
isometries on a firm footing.

Solutions to Exercises in Chapter 8

8.2 Isometries in the Poincaré Model

In this section we see what isometries look like in the Poinca
Model. We use the principles of Klein’s Erlanger Programm her
That is, we are aboe to prove general results about figures by tran
forming the figures to “nice” locations and proving the result ther

8.2.1 Let G be the set of rigid motions. Let f(2) = /1 z+4b; ar
g(2) = €22+ by. Then, go f(2) = €'?2(e1 24 by) + by = 9172,
(€'®2by +by) and thus go f(2) is in G. Since f~1(2) = e 71z -~

95
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then f~!isin G. If ¢ = 0 and b = 0 we get the identity in G. Lastl
associativity is automatic, as function composition is associative.

8.2.3 By Theorem 8.3 we can find a transformation such th:
the points 1 —1, and ¢ go to 1 oo and 0. This transformation
f(z) = §+1 i Also, g(2) = 51 2 takes 1, —1, and 0 to 1, oo, ar
0. Then, g~! o f is the desired transformation by Theorem 8.7.

8.2.5 Choose a =1=d and b=c =0 in f(z) = %=L,

8.2.7 Because function composition is associative.

8.2.9 Let P = 29 and Q = 21. Let f(z) = =2%. Then, f(20)
0 and f is a hyperbolic isometry. Next, let g( ) = ==}. The
g(z1) = 0 and g is a hyperbolic isometry. The composition g~! o
maps P to Q.

8.2.11 Let [ be a hyperbolic line from P to ). We can find
hyperbolic transformation that maps P to the origin (see the expl
nation for exercise 8.2.9). If the transformed line does not lie alor
the axis, we can transform it to the axis by a rotation. The cros
ratio is invariant under both of these transformations. Clearly, tl
cross-ratio defined for points on the z-axis is real. Also, the cros
ratio will look like %Z‘"—i which is always positive.

8.2.13 Since dy is invariant under hyperbolic isometries we hax
dp(z0,21) = du(9(20),g(z1)). Since, g(z1) = 0 we have by Theore:
6.12

1+ |g(20)|
di(z0,21) = l”(m)
|z0—21]
(1 + |1ZEZO%‘ )
1 — o=zl
|1—ZOH‘

Finding a common denominator in the last equation yields tl
result.
8.2.15 As in the proof of Theorem 8.11, we know that

)|

20 — W1 21 — Wo

d = |1
p(20,21) | H(ZO E—

= |In((z0, 21, w1, wp))
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ey

for zp and z7 in the disk, where wy and wy are the points of interse
tion of the circle through zp and z; (call this circle ¢) with the un
circle. Let zj and 2] be the inverse points of zp and z; with respe
to c. Then, by the proof of Lemma 8.8 we have

dp(z5,21) = [In((z, 21, w1, wo))l

= ‘ hl((z()? ZT? wi, wO))|

But, (20, 27, w1, wo) = (20, 2], w1, wo), as 2o, 21, Wo, and wy lie ¢
the same circle. Thus,

dp(zy,27) = |In((20, 27, w1, wo))|
= ’ - ln((zik,zo,wl,wo)ﬂ
= |In((27, 20, w1, wo))|

— |10(Cor, 70, w1, 00))

Again, (z1, 29, w1, wo) = (21, 20, w1, wp) and so,

dp(z5,21) = |In((21, 20, w1, wo))|
= | = In((20, 21, w1, w0))|
= dp(20,21)

To show that inversion is a reflection across ¢, we just note th:
inversion preserves the circle of inversion, and thus fixes the Poinca;
line defined by c.

8.3 Isometries in the Klein Model

In section 8.2 we see isometries treated in a very functional way—v
have formulas for isometries in the Poincaré disk defined by comple
rational functions. This section serves as a nice contrast in th:
isometries will be defined in a very geometric way through the u;
of poles. Also, isometries are defined by starting with reflections, :
the same way isometries were developed in Chapter 5.
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8.3.1 Let t be the Klein line through P and P’, and constru
the pole of t. Let 2 be the omega point where the Euclidean li1
through the pole of ¢ and P meets the boundary circle (on the oth
side of ¢t from the pole of t). Let Q' be the omega point where tl
Euclidean line through the pole of ¢t and P’ meets the bounda
circle (on the same side of ¢ from the pole of t). (Refer to Fig. 8.1
Then, the point @ where Q€ intersects t is the midpoint of PF
This can be seen by using the angle-angle congruence theorem f
Omega triangles. The line [ through ) and the pole of ¢ will be tl
perpendicular bisector of PP’.

Pole(l)

Pole(t)

Figure 8.1:

8.3.3 One possible construction is illustrated in Fig. 8.2. L
AB be a diameter of the Klein disk and let A be a point not at tl
center. Let B be the reflection of A across a diameter perpendicul:
to AB and construct two Klein lines (I and m) at A and B that a
perpendicular to AB. Construct the poles C' and D to these lin
and let CE be a ray from C' intersecting [ at F. This ray will crea;
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Klein line n. Then, there will be a common perpendicular (@ )
m and n, using the result from Ex 8.3.2. Also, this line must be ¢
the same side of AB as E is. Then, AEGHB is a pentagon wit
five right angles.

D

Figure 8.2:

8.3.5 We know from the construction of a Klein reflection that
will map a point P to a point P’ that lies on a line perpendicular 1
[. Thus, if P is already on a perpendicular ¢ to [, then its reflectic
is again on t. Likewise, r,(r;(P)) is again on t.

8.4 Mini-Project: The Upper Half-Plane Model

In this project we see yet a third model for hyperbolic geometr
A significant new development in this section is the idea of mod
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isomorphism. It would be a good idea to review this idea before yc
start this project.

8.4.1 There are two cases. If ¢ = 0, then f(z) = d'z +1
where @/ = % and V/ = 4. Since f(0) = ¥/, then V' is real. Sin
f(1) =da + V" is real then o' is real. Clearly, we can assume d =
in the fraction defining f. Thus, a,b,c, and d are real.

If ¢ # 0, then we can again assume ¢ = 1 by dividing top ar
bottom of the fraction by c¢. Since f(0) = g = 1y is real, the

b = rid. Also, since f(oo) = & = ry is real, then a = roc. Thu
f(z) = %. Now, for some real r3 we have f(r3) = %

oo. Thus, ¢rg3 +d =0 or d = —rgc. Then,

rocz 4+ ri(—r3c)
cz —T3c
roCcz — 1r1rsc

f(z) =

CzZ —T3cC
oz —T1Trs3
Z—7T3

Comparing this fraction with the original we see that a,b,c, ar
d are real.

8.4.3 If we consider the x-axis as the equivalent of the Poinca
circle, then “lines” should be clines that meet this boundary at rig]
angles. That is, lines should be either Euclidean lines that are pe
pendicular to the xz-axis, or arcs of circles perpendicular to the axi
That is, semi-circles with centers along the axis.

8.4.5 You can argue that any configuration of a “line” and
point off the line can be transformed by a suitable upper half-plai
transformation to the scene illustrated in Figure 8.4. Clearly, the
are an infinite number of semi-circles through zy that do not interse:
the y-axis.

8.6 Hyperbolic Calculation

In this section we do some basic calculus of hyperbolic geometr
Klein’s transformational view really shines here. We see how to d
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velop some exceptionally nice formulas for arclength, the angle
parallelism, and area using proofs based on simple configuration
Also, the hyperbolic Pythagorean Theorem is a nice result in th
section. The fact that hyperbolic geometry is “locally Euclidear
can be demonstrated nicely with the hyperbolic Pythagorean Th
orem. If we compute the Taylor expansion for cosh we see th:
cosh(c) = cosh(a) cosh(b) has as its second-order approximation tl
Fuclidean Pythagorean Theorem.

8.6.1 Use the definition of cosh and sinh.

8.6.3 This is a simple matter of checking the algebra.

8.6.5 Since the map S preserves the two distance functions
the models, then the lengths of the curves must be the same.

Next,

/| _ (w—i—z)—(w—z) |w/|
(w +1)?
]

/
—|w
|w + 7|2 |
Thus, using the change of variable formula for integration, v

get
b /
2
/ EAQIpY
a 1- ’2‘2

4w’ (1)
_ " Twwl
N lw—i[?
o 1- [w+i|?
’ 4w’ (t)]

= dt
o |w+il? —fw—if?

P 4w’ (t)]
N A(w+mwwmww+nﬁ
P A1)
N L2@m+mﬂt
b ‘ !

e
- / oit)
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8.7 Project 12 - Infinite Real Estate?

You will probably not believe the results of this project, which mak
it such a great lab!
8.7.1 We note that
W —1
1 :
w1
(u+i(v—1))
= R R)
(u+i(v+1))
; (u+i(v—1))(u—1i(v+1))
u? + (v+1)2
(U + (02— 1)) +i(—2u)
i
u? + (v+1)2

Thus,

Y= wy

8.7.3 The angle 0 will be defined by the tangent ﬁ to the circ
at P. If 0 is 90 degrees, then this tangent is perpendicular to tl
y-axis and it is obvious that the angle in the ) triangle at P is
right angle.

Otherwise, we can assume the tangent intersects the z-axis :
B. 1t follows that AOPB is a right triangle with right angle at I
Drop a perpendicular from P to the z-axis, intersecting at A. The:
/APB has measure 6. It immediately follows that the interior ang
of the doubly limiting triangle at P has measure 6.

Lab Conclusion For the conclusion of the lab, note that a ti
angular area in hyperbolic geometry has area bounded by 7 by Th
orem 8.28. A 4-sided figure can be split into two triangular figure
and so its area must be bounded by 27. A five-sided figure wou
have area bounded by 3, etc.
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Fractal Geometry

Much of the material in this chapter is at an advanced level, esp
cially the sections on contraction mappings and fractal dimension-
Sections 9.5 and 9.6. But this abstraction can be made quite co
crete by the computer explorations developed in the chapter. |
fact, the computer projects are the only way to really understar
these geometric objects on an intuitive level.

Solutions to Exercises in Chapter 9

9.3 Similarity Dimension

The notion of dimension of a fractal is very hard to make precis
In this section we present one simple way to define dimension, b
there are also other ways to define dimension as well, each useful fi
a particular purpose and all agreeing with integer dimension, br
not necessarily with each other.

9.3.1 Theorem 2.27 guarantees that the sides of the new triangl
are parallel to the original sides. Then, we can use SAS congruen
to achieve the result.

9.3.3 At each successive stage of the construction, 8 new squar
are created, each of area % the area of the squares at the previon

63
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stage. Thus, the pattern for the total area of each successive stag
of the construction is

1 8 64
I = 1—--—— - ——

9 81 93
1 S /8\*

= 1-= —
5> (3)

k=0

91-%

= 1-—-1

= 0

Thus, the area of the final figure is 0.

9.3.5 The similarity dimension would be 122

log(3) "
9.3.7 Split a cube into 27 sub-cubes, as in the Menger spong

construction, and then remove all cubes except the eight corn
cubes and the central cube. Do this recursively. The resulting fract

will have similarity dimension }gggg, which is exactly 2.

9.4 Project 13 - An Endlessly Beautiful Snowflake

If you want a challenge, you could think of other templates base
on a simple segment, generalizing the Koch template and the H:
template from exercise 9.4.4.

9.4.1 At stage 0 the Koch curve has length 1. At stage 1 it h:
length %. At stage 2 it has length % = ;%, since each segment
replaced by the template, which is % as long as the original segmen
Thus, at stage n the length will be g—:, and so the length will go
infinity.

9.4.3 The similarity dimension will be that of the template r
placement fractal. The similarity ratio is % and it takes 4 sub-objec
el

to create the template. Thus, the similarity dimension is
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9.6 Fractal Dimension

Sections 9.5 and 9.6 are quite “thick” mathematically. To get son
sense of the Hausdorff metric, you can compute it for some simp
pairs of compact sets. For example, two triangles in different p
sitions. Ample practice with examples will help you get a feel fi
the mini-max approach to the metric and this will also help you 1
successful with the homework exercises.

9.6.1 A function f is continuous if for each ¢ > 0 we can fir
d > 0 such that |f(z) — f(y)| < e when 0 < |z —y| < 0. Let S be
contraction mapping with contraction factor 0 < ¢ < 1. Then, give
€, let § =€ (if c=0)and § = £ (if ¢ > 0).

If c=0wehave 0= |S(z) - S(y)| <|z—y|<d=¢e

If ¢ > 0, we have |[S(z) — S(y)| < clz —y| <cS =e

9.6.3 Property (2): Since dy (A, A) = d(A, A), and since d(A4, A
max{d(x,A)|lz € A}, then we need to show d(z,A) = 0. Bu
d(z,A) = min{d(z,y)ly € A}, and this minimum clearly occu
when = = y; that is, when the distance is 0.

Property (3): If A # B then we can always find a point x
A that is not in B. Then, d(x, B) = min{d(z,y)|y € B} must |
greater than 0. This implies that d(A, B) = max{d(z, B)|z € A}
also greater than 0.

9.6.5 We know that

d(A,CUD) = maz{d(z,CUD)|z e A}
= maz{min{d(z,y)|x € Aandy € C or D}}
= maz{min{min{d(z,y)|x € Ay € C}, min{d(z,
= max{min{d(z,C),d(x,D)}|x € A}

The last expression is clearly less than or equal to maz{d(z,C)|x
A} =d(A,C) and also less than or equal to maz{d(z, D)|x € A}
d(A, D).

9.6.7 There are three contraction mappings which are used f
construct Sierpinski’s triangle. Each of them has contraction sca
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factor of 3. Thus, we want (3)° + (3)P + ()P =1, or 3(3)" =
Solving for D we get D = ;Zg g’g

9.7 Project 14 - IFS Ferns

Do not worry too about getting exactly the same numbers for tl
scaling factor and the rotations that define the fern. The importas
idea is that you get the right types of transformations (in the corre:
order of evaluation) needed to build the fern image. For exerci;
9.7.5, it may be hopeful to copy out one piece of the image and the
rotate and move it so it covers the other pieces, thus generating tl
transformations needed.
9.7.1 The rotation matrix R is given by

[ cos(£8)  sin(£%) } %[ 0.996 0.087}

—sin($%)  cos(2%) —0.087 0.996
The scaling matrix S is given by
0.8 0
0 0.8

If we let T be the translation in the vertical direction by h, the
T1 =T o S o R, which after rounding to the nearest tenth, match
the claimed affine transformation in the text.

9.7.3 The rotation matrix R is given by

cos(520T) —Sin(_é%?(r);) } - [ 0.5  0.866 }

sin(_lg%”) cos(gg —0.866 0.5
The scaling matrix S is given by
0.3 0
0 0.3

The reflection matrix r is given by

0
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If we let T" be the translation in the vertical direction by %, the
T3 =T o S o Ror, which after rounding to the nearest hundredt
matches the claimed affine transformation in the text.

9.7.5 For the lower left portion of the shape, we need to sca
the whole figure down by a little less than 0.5, say by 0.48. Als
we need to rotate the figure by 90 degrees and then translate
back by 0.5 in the z-direction to put it in place. Let 17 be tl
net transformation accomplishing this. Then Tj(x,y) = (—0.48y
0.5,0.48x). Let T be the transformation for the upper left portio
Then Ts(z,y) = (0.52,0.5y + 0.5). Let T3 be the transformation f
the upper right portion. Then T3(z,y) = (0.48y+0.5, —0.48x + 1.0
Finally. let T be the transformation for the small inner part. The
Tu(x,y) = (0.3x + 0.3,0.3y + 0.3) would work.

9.9 Grammars and Productions

This section will be very different from anything you have done b
fore, except for those who have had some computer science course
The connection between re-writing and axiomatic systems is a dee
one. One could view a theorem as essentially a re-writing of varion
symbols and terms used to initialize a set of axioms. Also, turt
geometry is a very concrete way to view re-writing and so we ha
a nice concrete realization of an abstract idea.

9.9.1 Repeated use of production rule 1 will result in an e
pression of the form a™Sb™. Then, using production rule 2, we g
a™b".

9.9.3 The level 1 rewrite is + RF — LF'L — FR+. This is show
in Fig. 9.1. The level 2 rewrite is +— LF+RFR+FL—F —+RF
LFL—FR+F+ RF—-LFL—-—FR+ —-F—-LF+ RFR+FL — -
This is shown in Fig. 9.2. For the last part of the exercise, note th:
all interior “lattice” points (defined by the length of one segmen
are actually visited by the curve. Thus, as the level increases (ar
we scale the curve back to some standard size) the interior poin
will cover space, just as the example in section 9.9 did.
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1

*—0

Figure 9.1:

Figure 9.2:

9.10 Project 15 - Words Into Plants

Grammars as representations of growth is an idea that can be tied
nicely with the notion of genetics from biology. A grammar is like
blueprint governing the evolution of the form of an object such as
bush, in much the same way that DNA in its expression as proteii
governs the biological functioning of an organism.

9.10.1 The start symbol was rewritten twice.

9.10.3 Here’s one simple example, plus the image generated fro
rewriting to a level of 3 (Fig. 9.3).

Productions: X— > F[+X][+ + X][—X]|[— — X]|X (Use a sme
turn angle)
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Figure 9.3:
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Sample Lab Report

Pollie Gonn

MCS 303 Project 0

September 12, 2003

The Amazing Pythagorean Theorem

Introduction

The Pythagorean Theorem is perhaps the most famous theore
in geometry, if not in all of mathematics. In this lab, we look :
one method of proving the Pythagorean Theorem by constructir
a special square. Part I of this report describes the constructic
used in the proof and Part II gives a detailed explanation of wl
this construction works, that is why the construction generates
proof of the Pythagorean theorem. Finally, we conclude with son
comments on the many proofs of the Pythagorean Theorem.

Part I:

To start out our investigation of the Pythagorean Theorem, v
assume that we have a right triangle with legs b and a and h
potenuse c. Our first task construction is that of a segment sul
divided into two parts of lengths a and b. Since a and b are a
bitrary, we just create a segment, attach a point, hide the origin
segment, and draw two new segments as shown.

71
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a b
° ° °
A B C
Figure A.1:

Then, we construct a square on side a and a square on side
The purpose of doing this is to create two regions whose total are
is a® 4+ b%. Clever huh? Constructing the squares involved sever
rotations, but was otherwise straightforward.

F G
D E
a b
A B C
Figure A.2:

The next construction was a bit tricky. We define a translatic
from B to A and translate point C to get point H. Then, we conne
H to D and H to G, resulting in two right triangles. In part II, v
will prove that both of these right triangles are congruent to tl
original right triangle.
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F G
D
E
a b
A B H C
Figure A.3:

Next, we hide segment BC and create segments BH and H(
This is so that we have well-defined triangle sides for the next ste
- rotating right triangle ADH 90 degrees about its top vertex, ar
right triangle HGC -90 degrees about its top vertex.

F G
<
D
E
a
A B H [}
Figure A.4:

Part II:

We will now prove that this construction yields a square (on DF
of side length c, and thus, since the area of this square is clear
equal to the sum of the areas of the original two squares, we hax
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a’® + b?> = ¢2, and our proof would be complete. By SAS, triang
HCB must be congruent to the original right triangle, and thus i
hypotenuse must be c. Also, by SAS, triangle DAH is also congrue:
to the original triangle, and so its hypotenuse is also c¢. Then, angl
AHD and CHG(= ADH) must sum to 90 degrees, and the ang
DHG is a right angle. Thus, we have shown that the constructic
yields a square on DH of side length ¢, and our proof is complete.

Conclusion:

This was a very elegant proof of the Pythagorean Theorem. ]
researching the topic of proofs of the Pythagorean Theorem, we di
covered that over 300 proofs of this theorem have been discovere
Elisha Scott Loomis, a mathematics teacher from Ohio, compile
many of these proofs into a book titled The Pythagorean Propos
tion, published in 1928. This tidbit of historical lore was gleane
from the Ask Dr. Math website
(http://mathforum.org/library /drmath/view/62539.html). It seen
that people cannot get enough of proofs of the Pythagorean The
rem.
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Sample Lab Grading
Sheets

Sample Grade Sheet for Project 1 - The Ratio Made «
Gold

e 10 points - Organization And Writing Mechanics
— 5 Structure of report is clear, with logical and appropria;

headings and captions, including an introduction and
conclusion.

— 5 Spelling and Grammar

e 50 points - Discussion of Project Work and Solutions to Exe
cises

5 Discussion of the Construction of the Golden Ratio

5 Discussion of the Construction of the Golden Rectang
— 10 Solution to Exercise 1.3.1
10 Solution to Exercise 1.3.2
10 Solution to Exercise 1.3.3

75
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— 10 Solution to Exercise 1.3.4

e Total Points for Project (out of 60 possible)
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Sample Grade Sheet for Project 2 - A Concrete As
iomatic System

e 10 points - Organization And Writing Mechanics

— 5 Structure of report is clear, with logical and appropria;
headings and captions, including an introduction and
conclusion.

— 5 Spelling and Grammar

e 50 points - Discussion of Project Work and Solutions to Exe
cises

10 Discussion of Euclid’s Five Postulates

10 Construction of Rectangles

— 10 Sum of Angles in a Triangle

10 Euclid’s Equilateral Triangle Construction

10 Perpendicular to a Line through a Point Not on tl
Line

e Total Points for Project (out of 60 possible)
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Sample Grade Sheet for Project 3 - Special Points of
Triangle

e 10 points - Organization And Writing Mechanics

— 5 Structure of report is clear, with logical and appropria;
headings and captions, including an introduction and
conclusion.

— 5 Spelling and Grammar

e (60 points - Discussion of Project Work and Solutions to Exe
cises

10 Discussion of Work Done in Lab
— 10 Exercise 2.3.1
— 10 Exercise 2.3.2
— 10 Exercise 2.3.3
— 10 Exercise 2.3.4
— 10 Exercise 2.3.5

e Total Points for Project (out of 70 possible)
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Sample Grade Sheet for Project 4 - Circle Inversion an
Orthogonality

e 10 points - Organization And Writing Mechanics

— 5 Structure of report is clear, with logical and appropria;
headings and captions, including an introduction and
conclusion.

— 5 Spelling and Grammar

e 50 points - Discussion of Project Work and Solutions to Exe
cises

10 Discussion of Work Done in Lab
— 10 Exercise 2.7.1
— 10 Exercise 2.7.2
— 10 Exercise 2.7.3
— 10 Exercise 2.7.4

e Total Points for Project (out of 60 possible)
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Sample Grade Sheet for Project 7 - Quilts and Tran:
formations

e 10 points - Organization And Writing Mechanics

— 5 Structure of report is clear, with logical and appropria;
headings and captions, including an introduction and
conclusion.

— 5 Spelling and Grammar

e 50 points - Discussion of Project Work and Solutions to Exe
cises

10 Discussion of Initial Work Done on Quilt 1
— 10 Exercise 4.5.1
— 10 Exercise 4.5.2
— 10 Exercise 4.5.3
— 10 Exercise 4.5.4

e Total Points for Project (out of 60 possible)
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Sample Grade Sheet for Project 8 - Constructing Con
positions

e 10 points - Organization And Writing Mechanics

— 5 Structure of report is clear, with logical and appropria;
headings and captions, including an introduction and
conclusion.

— 5 Spelling and Grammar

e 50 points - Discussion of Project Work and Solutions to Exe
cises

10 Discussion of Initial Work Done
— 10 Exercise 4.8.1
— 10 Exercise 4.8.2
— 10 Exercise 4.8.3
— 10 Exercise 4.8.4

e Total Points for Project (out of 60 possible)
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Sample Grade Sheet for Project 9 - Constructing Tesse
lations

e 10 points - Organization And Writing Mechanics

— 5 Structure of report is clear, with logical and appropria;
headings and captions, including an introduction and
conclusion.

— 5 Spelling and Grammar

e 30 points - Discussion of Project Work and Solutions to Exe
cises

— 10 Discussion of Initial Work Done
— 10 Exercise 5.5.1
— 10 Exercise 5.5.2

e Total Points for Project (out of 40 possible)
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Sample Grade Sheet for Project 10 - The Saccheri Quad
lateral

e 10 points - Organization And Writing Mechanics

— 5 Structure of report is clear, with logical and appropria;
headings and captions, including an introduction and
conclusion.

— 5 Spelling and Grammar

e (60 points - Discussion of Project Work and Solutions to Exe
cises

10 Discussion of Initial Work Done
— 10 Exercise 6.5.1

— 8 Exercise 6.5.2 part i

— 8 Exercise 6.5.2 part ii

— 8 Exercise 6.5.2 part iii

— 8 Exercise 6.5.2 part iv

— 8 Exercise 6.5.2 part v

e Total Points for Project (out of 70 possible)
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