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Chapter 1

Geometry and the

Axiomatic Method

The development of the axiomatic method of reasoning was one of
the most profound events in the history of mathematics. In this
chapter we explore axiomatic systems and their properties.

One strand running through the chapter is the search for the
“ideal”. The golden ratio is the ideal in concrete form, realized
through natural and man-made constructions. Deductive reasoning
from a base set of axioms is the ideal in abstract form, realized in
the crafting of clear, concise, and functional definitions, and in the
reasoning employed in well-constructed proofs.

Another strand in the chapter, and which runs through the entire
text, is that of the interplay between the concrete and the abstract.
As you work through this text, you are encouraged to “play” with
concrete ideas, such as how the Golden Ratio appears in nature, but
you are also encouraged to play (experiment) when doing proofs and
more abstract thinking. The experimentation in the latter is of the
mind, but it can utilize many of the same principles of exploration
as you would use in a computer lab. When trying to come up with
a proof you should consider lots of examples and ask “What if ...?”
questions. Most importantly, you should interact with the ideas,

1



i

i

“book” — 2011/8/23 — 19:41 — page 2 — #8

2 CHAPTER 1. AXIOMATIC METHOD

just as you interact with a computer lab project.

Student interaction with ideas and discovery of concepts is
primary organizing principle for the text. Interaction is encouraged
in three ways. First, topics are introduced and developed in the
text. Next, lab projects reinforce concepts, or introduce related
ideas. Lastly, project results are discussed, and conclusions drawn,
in written lab reports. You will first read about concepts and hear
them discussed in class. Then, you will conduct ”experiments” to
make the ideas concrete. Finally, you will conceptualize ideas b
re-telling them in project reports.

The work you do in the lab and in group projects is a critical
component of the course. The projects that are designed to be done
in groups have an additional pedagogical advantage. You will find
that by speaking with other students, using mathematical terms and
concepts, you will better internalize such concepts and make them
less abstract.

Notes on Lab Projects

The main difficulty you will face with the first lab project will be in
learning the functionality of the Geometry Explorer program. One
major point to watch out for is the notion of “attaching” objects
together when doing their construction. For example, when you
create a point on top of a line, the point becomes attached to the
line. That is, when the point is moved it is constrained to follow the
line.

In order to help with the formatting of lab reports there is
sample lab report for a “fake” lab on the Pythagorean Theorem in
appendix A of this guide.
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SOLUTIONS TO EXERCISES IN CHAPTER 1

Solutions to Exercises in Chapter 1

1.3 Project 1 - The Ratio Made of Gold

1.3.1 Since AB = 2, we have that 2
x
= 1+

√
5

2 . Solve for x and clear
the denominator of radicals.

1.3.3 Have some fun with this one, but do not get carried awa
with this idea and spend the whole class period on it!

1.4 The Rise of the Axiomatic Method

In this section we focus on reasoning in mathematics. The prob-
lems in this section may seem quite distant from the geometry you
learned in high school, but the goal is to practice reasoning from the
definitions and properties that an axiomatic system posits and then
argue using just those basic ideas and relationships. This is goo
mental training. It is all too easy to argue from diagrams when
trying to justify geometric statements.

1.4.1 If dictionaries were not circular, there would need to be an
infinite number of different words in the dictionary.

1.4.3 Let a set of two different flavors be called a pairing. Sup-
pose there were m children and n > m pairings. By Axiom 2 every
pairing is associated to a unique child. Thus, for some two pairings,
P1,P2 there is a child C associated to both. But this contradicts
Axiom 3. Likewise, if m > n, then by Axiom 3 some two children
would have the same pairing. This contradicts Axiom 2. So, m =
and, since the number of pairings is 4 + 3+ 2+ 1 = 10, there are 10
children.

1.4.5 There are exactly four pairings possible of a given flavor
with the others. By exercise 1.4.3 we know that there are four
distinct children associated to these pairings.

1.4.7 By Axioms 2 and 4 we have ex = (xx−1)x = x(x−1x). So,
all we need to do is show that x−1x = e. Now, (x−1x)(x−1x) =
x−1(xx−1)x = x−1ex = x−1x, by Axioms 2, 3, and 4. Let y = x−1x
Then, yy = y and yyy−1 = yy−1 by Axiom 4. So, y = e by Axioms
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4 CHAPTER 1. AXIOMATIC METHOD

3 and 4 and the proof is complete. Note: This proof is a bit tricky
– you may want to first experiment with xx−1.

1.4.9 First we show that 1 ∈M . By Axiom 4 we know 1 is not
the successor of any natural number. In particular, it cannot be
successor of itself. Thus, 1′ 6= 1 and 1 ∈ M . Now, suppose x ∈ M

That is, x′ 6= x. By Axiom 3 we have that (x′)′ 6= x′, and so x′ ∈M

Both conditions of Axiom 6 are satisfied and thus M = N .

1.4.11 Given x, let M = {y|x + y is defined}. Then, by defi-
nition 1 ∈ M . Suppose y ∈ M . Then, x + y′ = (x + y)′ is defined
and y′ ∈ M . So, M = N by Axiom 6. Now, since x was chosen
arbitrarily, addition is defined for all x and y.

1.4.13 This is a good discussion question. Think about the role
of abstraction versus application in mathematics. Think about how
abstraction and application cross-fertilize one another.

1.5 Properties of Axiomatic Systems

This is a “meta” section. By this is meant that we are studying
properties of axiomatic systems themselves, considering such sys-
tems as mathematical objects in comparison to other systems. This
may seem quite foreign territory to you, but have an open mind
and think about how one really knows that mathmeatics is true or
logically consistent. We often think of mathematics as an ancien
subject, but in this section we bring in the amazing results of the
twentieth century mathematician Kurt Godel.

If this topic interests you, you may want to further researc
the area of information theory and computability in computer sci-
ence. A good reference here is Gregory Chaitin’s book The Limits

of Mathematics (Springer, 1998.) Additionally, much more could b
investigated as to the various philosophies of mathematics, in par-
ticular the debates between platonists and constructionists, or be-
tween intuitionists and formalists. A good reference here is Edna E.
Kramer’s The Nature and Growth of Modern Mathematics (Prince-
ton, 1981), in particular Chapter 29 on Logic and Foundations.
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SOLUTIONS TO EXERCISES IN CHAPTER 1

1.5.1 Let S be the set of all sets which are not elements of
themselves. Let P be the proposition that “S is an element of itself”.
And consider the two propositions P and the negation of P , whic
we denote as ¬P . Assume P is true. Then, S is an element of itself.
So, S is a set which by definition is not an element of itself. So, ¬P
is true. Likewise, if ¬P is true then P is true. In any event we get
P and ¬P both true, and the system cannot be consistent.

1.5.3 Good research books for this question are books on the
history of mathematics. This could be a good final project idea.

1.5.5 Let P be a point. Each pairing of a point with P is asso-
ciated to a unique line. There are exactly three such pairings.

1.5.7 Yes. The lines and points satisfy all of the axioms.

1.5.9 If (x, y) is in P , then x < y. Clearly, y < x is impossible
and the first axiom is satisfied. Also, inequality is transitive on
numbers so the second axiom holds and this is a model.

1.6 Euclid’s Axiomatic Geometry

In this section we take a careful look at Euclid’s original axiomatic
system. We observe some of its inadequacies in light of our modern
“meta” understanding of such systems, and discuss the one axiom
that has been the creative source of much of modern geometry – the
Parallel Postulate.

1.6.1 Good research books for this question are books on the
history of mathematics.

1.6.3 An explanation can be given based on a figure like the
following:
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6 CHAPTER 1. AXIOMATIC METHOD

a

a

b

b

Figure 1.1:

1.6.5

123 = 3 · 36 + 15

36 = 2 · 15 + 6

15 = 2 · 6 + 3

6 = 2 · 3 + 0

Thus, gcd(123, 36) = 3.
1.6.7 This exercise is a good starting off point for discussing the

importance of definitions in mathematics. One possible definition
for a circle is:

Definition 1.1. A circle with center O and radius length r is the
set of points P on the sphere such that the distance along the great
circle from O to P is r.

Note that this definition is itself not entirely well-defined, as w
have not specified what we mean by distance. Here, again, is a goo
opportunity to wrestle with the “best” definition of distance. For
circles of any radius to exist, distance must be defined so that it
grows without bound. Thus, one workable definition is for distance
to be net cumulative arclength along a great circle as we move from
a point O to a point P .
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SOLUTIONS TO EXERCISES IN CHAPTER 1

An angle ABC can be most easily defined as the Euclidean angle

made by the tangent lines at B to the circles defining
←→
AB and

←→
CB

Then, Postulate 1 is satisfied as we can always construct a great
circle passing through two points on the sphere. If the points are
antipodal, we just use any great circle through those points. Other-
wise, we simply intersect the sphere with the plane through the tw
points and the center of the sphere.

Postulate 2 is satisfied as we can always extend an arc of a great
circle, although we may retrace the existing arc.

Postulate 3 is satisfied if we use the cumulative distance defini-
tion as discussed above.

Postulate 4 is automatically satisfied as angles are Euclidean
angles.

Postulate 5 is not satisfied, as every pair of lines intersects. An
easy proof of this is to observe that every line is uniquely defined b
a plane through the origin. Two non-parallel planes will intersect in
a line, and this line must intersect the sphere at two points.

1.6.9 This is true. Use a plane argument. Given a plane through
the origin, we can always find an orthogonal plane. The angle these
planes make will equal the angle of the curves they define on the
sphere, as the spherical angles are defined by tangent lines to the
sphere, and thus lie in the planes.

1.6.11 Yes. An example is the triangle that is defined in the
first octant by intersecting the sphere with each of the three positiv
coordinate axes. This triangle has three right angles.

1.7 Project 2 - A Concrete Axiomatic System

After the last few sections dealing with abstract axiomatic systems,
this lab is designed so that you can explore another geometric system
through concrete manipulation of the points, lines, etc of that sys-
tem. The idea here is to have you explore the environment first, then
make some conjectures about what is similar and what is differen
in this system as compared to standard Euclidean geometry.



i

i

“book” — 2011/8/23 — 19:41 — page 8 — #14

8 CHAPTER 1. AXIOMATIC METHOD

1.7.1 You should report the results of your experiments here.
You do not yet have the tools to prove these results, but you should
provide evidence that you have fully explored each idea.

For example, you could report that you tried to construct a rect-
angle, but were unsuccessful in doing so. You may discover that
you construct a four-sided figure with three right angles, the fourth
angle is always less than ninety degrees.

The sum of the angles in a triangle will be less than 180 degrees.
Euclid’s construction of an equilateral triangle is valid in hyper-

bolic geometry. Again, you should provide experimental evidence
for this.

Finally, the perpendicular to a line through a point not on the
line is a valid construction. Here, it is enough for you to experimen
with the built-in perpendicular construction tool to create a new
line that always stays perpendicular to a given line.
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Chapter 2

Euclidean Geometry

In this chapter we start off with a very brief review of basic properties
of angles, lines, and parallels.

Solutions to Exercises in Chapter 2

2.1 Angles, Lines, and Parallels

This section may be the least satisfying section in the chapter for
you, since many theorems are referenced without proof. These re-
sults were (hopefully) covered in great detail in your high school
geometry course and we will only briefly review them. A full and
consistent development of the results in this section would entail
a “filling in” of many days foundational work based on Hilbert’s
axioms.

A significant number of the exercises in this section deal with
parallel lines. This is for two reasons. First of all, historically there
was a great effort to prove Euclid’s fifth Postulate by converting it
into a logically equivalent statement that was hoped to be easier to
prove. Thus, many of the exercises nicely echo this history. Sec-
ondly, parallels and the parallel postulate are at the heart of one
of the greatest revolutions in math—the discovery of non-Euclidean

9
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10 CHAPTER 2. EUCLIDEAN GEOMETRY

geometry. This section foreshadows that development, which is cov-
ered in Chapters 7 and 8.

2.1.1 It has already been shown that ∠FBG ∼= ∠DAB. Also, b
the vertical angle theorem (Theorem 2.3) we have ∠FBG ∼= ∠EBA

and thus, ∠DAB ∼= ∠EBA.

Now, ∠DAB and ∠CAB are supplementary, thus add to tw
right angles. Also, ∠CAB and ∠ABF are congruent by the first
part of this exercise, as these angles are alternate interior angles.
Thus, ∠DAB and ∠ABF add to two right angles.

2.1.3.a False, right angles are defined solely in terms of congru-
ent angles.

2.1.3.b False, an angle is defined as just the two rays plus the
vertex.

2.1.3.c True. This is part of the definition.

2.1.3.d False. The term “line” is undefined.

2.1.5 Proposition I-23 states that angles can be copied. Let A

and B be points on l and n respectively and letm be the line through
A and B. If t = m we are done. Otherwise, let D be a point on
that is on the same side of n as l. (Assuming the standard properties
of betweenness) Then, ∠BAD is smaller than the angle at A formed
by m and n. By Theorem 2.9 we know that the interior angles at B
and A sum to two right angles, so ∠CBA and ∠BAD sum to less
than two right angles. By Euclid’s fifth postulate t and l must meet.

2.1.7 First, assume Playfair’s Postulate, and let lines l and m

be parallel, with line t perpendicular to l at point A. If t does not
intersect m then, t and l are both parallel to m, which contradicts
Playfair. Thus, t intersects m and by Theorem 2.9 t is perpendicular
at this intersection.

Now, assume that whenever a line is perpendicular to one of tw
parallel lines, it must be perpendicular to the other. Let l be a line
and P a point not on l. Suppose that m and n are both parallel to
at P . Let t be a perpendicular from P to l. Then, t is perpendicular
to m and n at P . By Theorem 2.4 it must be that m and n are
coincident.
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SOLUTIONS TO EXERCISES IN CHAPTER 2 11

2.1.9 Assume Playfair and let lines m and n be parallel to line
l. If m 6= n and m and n intersect at P , then we would have tw
different lines parallel to l through P , contradicting Playfair. Thus,
either m and n are parallel, or are the same line.

Conversely, assume that two lines parallel to the same line are
equal or themselves parallel. Let l be a line and suppose m and
are parallel to l at a point P not on l. Then, n and m must be equal,
as they intersect at P .

2.2 Congruent Triangles and Pasch’s Axiom

This section introduces many results concerning triangles and also
discusses several axiomatic issues that arose from Euclid’s treatmen
of triangles.

2.2.1 Yes, it could pass through points A and B of ∆ABC. It
does not contradict Pasch’s axiom, as the axiom stipulates that the
line cannot pass through A, B, or C.

2.2.3 No. Here is a counter-example.

A B

D C

l

Figure 2.1:

2.2.5 If A = C we are done. If A, B, and C are collinear, then
B cannot be between A and C, for then we would have two points
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12 CHAPTER 2. EUCLIDEAN GEOMETRY

of intersection for two lines. If A is between B and C, then l cannot
intersect AC. Likewise, C cannot be between A and B.

If the points are not collinear, suppose A and C are on opposite
sides. Then l would intersect all three sides of ∆ABC, contradicting
Pasch’s axiom.

2.2.7 Let ∠ABC ∼= ∠ACB in ∆ABC. Let
−−→
AD be the angle

bisector of ∠BAC meeting side BC at D. Then, by AAS, ∆DBA

and ∆DCA are congruent and AB ∼= AC.

2.2.9 Suppose that two sides of a triangle are not congruent.
Then, the angles opposite those sides cannot be congruent, as if they
were, then by the previous exercise, the triangle would be isosceles.

Suppose in ∆ABC that AC is greater than AB. On AC we can
find a point D between A and C such that AD ∼= AB. Then, ∠ADB

is an exterior angle to ∆BDC and is thus greater than ∠DCB. But,
∆ABD is isosceles and so ∠ADB ∼= ∠ABD, and ∠ABD is greater
than ∠DCB = ∠ACB.

2.2.11 Let ∆ABC and ∆XY Z be two right triangles with righ
angles at A and X, and suppose BC ∼= Y Z and AC ∼= XZ. Suppose
AB is greater than XY . Then, we can find a point D between A and
B such that AD ∼= XY . By SAS ∆ADC ∼= ∆XY Z. Now, ∠BDC is
exterior to ∆ADC and thus must be greater than 90 degrees. But,
∆CDB is isosceles, and thus ∠DBC must also be greater than 90
degrees. This is impossible, as then ∆CDB would have angle sum
greater than 180 degrees.
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A C

B

X Z

Y

D

Figure 2.2:

2.3 Project 3 - Special Points of a Triangle

You are encouraged to explore and experiment in this lab project.
Are there any other sets of intersecting lines that one could construct
for a given triangle? Are there interesting properties of constructed
intersecting lines in other polygons?

2.3.1 ∆DGB and ∆DGA are congruent by SAS, as are ∆EGB

and ∆EGC. Thus, AG ∼= BG ∼= CG. By SSS ∆AFG ∼= ∆CFG

and since the angles at F must add to 180 degrees, the angles at F
must be congruent right angles.

2.3.3 The angle pairs in question are all pairs of an exterior
angle and an interior angle on the same side for a line falling on tw
parallel lines. These are congruent by Theorem 2.9.

Since ∠DAB, ∠BAC, and ∠CAE sum to 180 degrees, and
∠BDA, ∠BAD, and ∠ABD sum to 180 then, using the congru-
ences shown in the diagram, we get that ∠DBA ∼= ∠BAC. Like-
wise, ∠BAD ∼= ∠ABC. By ASA we get that ∆ABC ∼= ∆BAD

Similarly, ∆ABC ∼= ∆CEA and ∆ABC ∼= ∆FCB.

2.3.5 Let
−−→
AB and

−→
AC define an angle and let

−−→
AD be the bi-

sector. Drop perpendiculars from D to
−−→
AB and

−→
AC, and assume

these intersect at B and C. Then, by AAS, ∆ABD and ∆ACD are
congruent, and BD ∼= CD.

Conversely, suppose D is interior to ∠BAC with BD perpendic-
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14 CHAPTER 2. EUCLIDEAN GEOMETRY

ular to
−−→
AB and CD perpendicular to

−→
AC. Also, suppose that BD ∼=

CD. Then, by the Pythagorean Theorem AB2 + BD2 = AD2 and
AC2+CD2 = AD2. Thus, AB ∼= AC and by SSS ∆ABD ∼= ∆ACD

This implies that ∠BAD ∼= ∠CAD.

2.4.1 Mini-Project:Area in Euclidean Geometry

This section includes the first “mini-project” for the course. These
projects are designed to be done in the classroom, in groups of three
or four. Each group should elect a Recorder. The Recorder’s sole
job is to outline the group’s solutions to exercises. The summary
should not be a formal write-up of the project, but should give
brief synopsis of the group’s reasoning process.

The main goal for the mini-projects is to have discussion of ge-
ometric ideas. Through the group process, you can clarify your
understanding of concepts, and help others better grasp abstract
ways of thinking. There is no better way to conceptualize an idea
than to have to explain it to another person.

In this mini-project, you are asked to grapple with the notion
of “area”. The notion of area is not that simple or obvious. For
example, what does it mean for two figures to have the same area?

2.4.1 Construct a diagonal and use the fact that alternate inte-
rior angles of a line falling on parallel lines are congruent to generate
an ASA congruence for the two sub-triangles created in the paral-
lelogram.

2.4.3 If the figure can be split into triangle pieces that can b
separated into congruent pairs, then, since triangles are polygons, it
can be split into congruent pairs of polygonal pieces.

On the other hand, it it can be split into congruent polygonal
pieces, then we can split the polygon pieces into triangles, and w
can use SAS repeatedly to generate congruent pairs of triangles.

2.4.5 Use Theorem 2.8 and Exercise 2.4.1.

Project Report

Hidden Assumptions? One hidden assumption is the notion that
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areas are additive. That is, if we have two figures that are not
overlapping, then the area of the union is the sum of the separate
areas.

2.4.2 Cevians and Area

2.4.7 Since a median is a cevian to a midpoint, then the fractions
in the ratio product of Theorem 2.24 are all equal to 1.

2.4.9 Refer to the figure below. By the previous exercise w
know that 1+2+3 = 4+5+6 (in terms of areas). Also, since 1 and
2 share the same base and height we have 3 = 4. Similarly, 1 =
and 5 = 6. Thus, 1 = 6.

Similarly, 2 + 3 + 4 = 1+ 5+ 6 will yield 4 = 5, and 3 + 4+ 5 =
1 + 5 + 5 yields 2 = 3. Thus, all 6 have the same area.

1

2

3 4

5

6

Figure 2.3:

2.5 Similar Triangles

As stated in the text, similarity is one of the most useful tools in the
geometer’s toolkit. It can be used in the definition of the trigono-
metric functions and in proofs of theorems like the Pythagorean
Theorem.

2.5.1 Since
←→
DE cuts two sides of triangle at the midpoints, then

by Theorem 2.27, this line must be parallel to the third side BC

Thus ∠ADE ∼= ∠ABC and ∠AED ∼= ∠ACB. Since the angle at A
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is congruent to itself, we have by AAA that ∆ABC and ∆ADE are
similar, with proportionality constant of 1

2 .

A

B C

D E

Figure 2.4:

2.5.3 Let ∆ABC and ∆DEF have the desired SSS similarit
property. That is sides AB and DE, sides AC and DF , and sides
BC and EF are proportional. We can assume that AB is at least
as large as DE. Let G be a point on AB such that AG ∼= DE. Let←→
GH be the parallel to

←→
BC through G. Then,

←→
GH must intersect←→

AC, as otherwise
←→
AC and

←→
BC would be parallel. By the properties

of parallels, ∠AGH ∼= ∠ABC and ∠AHG ∼= ∠ACB. Thus, ∆AGH

and ∆ABC are similar.

Therefore, AB
AG

= AC
AH

. Equivalently, AB
DE

= AC
AH

. We are given
that AB

DE
= AC

DF
. Thus, AH ∼= DF .

Also, AB
AG

= BC
GH

and AB
AG

= AB
DE

= BC
EF

. Thus, GH ∼= EF .

By SSS ∆AGH and ∆DEF are congruent, and thus ∆ABC and
∆DEF are similar.
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A

B C

D

E F

G H

Figure 2.5:

2.5.5 Any right triangle constructed so that one angle is con-
gruent to ∠A must have congruent third angles, and thus the con-
structed triangle must be similar to ∆ABC. Since sin and cos are
defined in terms of ratios of sides, then proportional sides will hav
the same ratio, and thus it does not matter what triangle one uses
for the definition.

2.5.7 If the parallel to
←→
AC does not intersect

←→
RP , then it would

be parallel to this line, and since it is already parallel to
←→
AC, then b

exercise 2.1.15
←→
RP and

←→
AC would be parallel, which is impossible.

By the properties of parallels, ∠RAP ∼= ∠RBS and ∠RPA ∼=
∠RSB. Thus, by AAA ∆RBS and ∆RAP are similar. ∆PCQ and
∆SBQ are similar by AAA using an analogous argument for two of
the angles and the vertical angles at Q.

Thus, CP
BS

= CQ
BQ

= PQ
QS

, and AP
BS

= AR
BR

= PR
SR

. So, CP
AP

BQ
QC

=
CP
AP

BS
CP

= BS
AP

And, CP
AP

BQ
QC

AR
RB

= BS
AP

AR
RB

= BS
AP

AP
BS

= 1.

2.5.1 Mini-Project: Finding Heights

This mini-project is a very practical application of the notion of
similarity. The mathematics in the first example for finding heigh
is not hard, but the interesting part is the data collection. You will
need to determine how to get the most accurate measurements using
the materials on hand.



i

i

“book” — 2011/8/23 — 19:41 — page 18 — #24

18 CHAPTER 2. EUCLIDEAN GEOMETRY

The second method of finding height is a calculation using tw
similar triangles. The interesting part of this project is to see the
connection between the mirror reflection and the calculation you
made in part I.

You should work in small groups with a Recorder, but make sure
the Recorder position gets shifted around from project to project.

2.6 Circle Geometry

This section is an introduction to the basic geometry of the circle.
The properties of inscribed angles and tangents are the most impor-
tant properties to focus on in this section.

2.6.1 Case I: A is on the diameter through OP . Let α =
m∠PBO and β = m∠POB. Then, β = 180−2α. Also, m∠AOB =
180− β = 2α.

Case II: A and B are on the same side of
←→
PO. We can assume

that m∠OPB > m∠OPA. Let m∠OPB = α and m∠OPA = β

Then, we can argue in a similar fashion to the proof of the Theorem
using α− β instead of α+ β.

2.6.3 Consider ∠AQO where O is the center of the circle through
A. This must be a right angle by Corollary 2.33. Similarly, ∠BQO

must be a right angle, where O′ is the center of the circle through
B. Thus, A, Q, and B are collinear.

2.6.5 Let AB be the chord, O the center, and M the midpoin
of AB. Then ∆AOM ∼= ∆BOM by SSS and the result follows.

2.6.7 Consider a triangle on the diagonal of the rectangle. This
has a right angle, and thus we can construct the circle on this angle.
Since the other triangle in the rectangle also has a right angle on
the same side (the diameter of the circle) then it is also inscribed in
the same circle.

2.6.9 Suppose they intersected at another point P . Then, ∆TB

and ∆TAP are both isosceles triangles. But, this would imply, b
the previous exercise, that there is a triangle with two angles greater
than a right angle, which is impossible.
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2.6.11 Let P and Q be points on the tangent, as shown. Then,
∠BDT ∼= ∠BTP , as both are inscribed angles on the same arc.
Likewise, ∠ACT ∼= ∠ATQ. Since, ∠BTP ∼= ∠ATQ (vertical an-

gles), then ∠BDT ∼= ∠ACT and the lines
←→
AC and

←→
BD are parallel.

T

c
2

c
1

A

C

B

D

P

Q

Figure 2.6:

2.6.13 Suppose that the bisector did not pass through the center.
Then, construct a segment from the center to the outside point. By
the previous theorem, the line continued from this segment must
bisect the angle made by the tangents. But, the bisector is unique,
and thus the original bisector must pass through the center.

2.7 Project 4 - Circle Inversion and Orthogonality

This section is crucial for the later development of the Poincar
model of non-Euclidean (hyperbolic) geometry. It is also has some
of the most elegant mathematical results found in the course.

2.7.1 By Theorem 2.32, ∠Q2P1P2
∼= ∠Q2Q1P2. Thus, ∠PP1Q2

∠PQ1P2. Since triangles ∆PP1Q2 and ∆PQ1P2 share the angle at
P , then they are similar. Thus, PP1

PQ1
= PQ2

PP2
, or (PP1)(PP2) =

(PQ1)(PQ2).
2.7.3 By similar triangles OP

OT
= OT

OP ′ . Since OT = r the result
follows.
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Chapter 3

Analytic Geometry

This chapter is a very quick review of analytic geometry. In suc-
ceeding chapters, analytic methods will be utilized freely.

Solutions to Exercises in Chapter 3

3.2 Vector Geometry

3.2.1 If A is on either of the axes, then so is B and the distance
result holds by the definition of coordinates. Otherwise, A (and B

are not on either axis. Drop perpendiculars from A and B to the x

axis at P and Q. By SAS similarity, ∆AOP and ∆BOQ are similar,
and thus ∠AOP ∼= ∠BOQ, which means that A and B are on the

same line
←→
AO, and the ratio of BO to AO is k.

3.2.3 The vector from P to Q is in the same direction (or oppo-
site direction) as the vector v. Thus, since the vector from P to Q is
~Q− ~P , we have ~Q− ~P = tv, for some real number t. In coordinates
we have (x, y)− (a, b) = (tv1, tv2), or (x, y) = (a, b) + t(v1, v2).

3.2.5 By exercise 3.2.3 the line through A and B can be rep-
resented by the set of points of the form ~A + t( ~B − ~A). Then,
M = 1

2(
~A+ ~B) = ~A+ 1

2(
~B− ~A) is on the line through A and B, and

is between A and B. Let A = (x1, y1) and B = (x2, y2), then the

21
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distance from A to M is
√

(x1

2 −
x2

2 )
2 + (y12 −

y2
2 )

2, which is equal

to the distance from B to M .

3.3 Project 5 - Bézier Curves

3.3.1 The derivative to ~c(t) is ~c′(t) = 2 ~B − 2 ~A + 2t(~C − 2 ~B + ~A

Then ~c′(0) = 2 ~B − 2 ~A, which is in the direction of ~B − ~A and
~c′(1) = 2 ~B−2 ~A+2(~C−2 ~B+ ~A = 2~C−2 ~B, which is in the direction
of ~C − ~B.

3.3.3 Similar computation to Exercise 3.3.1

3.4 Angles in Coordinate Geometry

3.4.1 Let ~A = (cos(α), sin(α)) and ~B = (cos(β), sin(β)). Then, from
Theorem 3.11 we have cos(α − β) = ~A ◦ ~B, since ~A and ~B are unit
length vectors. The result follows immediately.

3.4.3 By exercise 3.4.1,

cos(
π

2
− (α+ β)) = cos(

pi

2
) cos(α+ β) + sin(

pi

2
90) sin(α+ β))

= sin(α+ β).

Then, use the formula from Exercise 3.4.2 with the term inside cos
being (pi2 − α) + (−β).

3.5 The Complex Plane

3.5.1

eiθeiφ = (cos(θ) + i sin(θ))(cos(φ) + i sin(φ))

= (cos(θ) cos(φ)− sin(θ) sin(φ)) + i(cos(θ) sin(φ) + sin(θ)

= cos(θ + φ) + i sin(θ + φ)

= ei(θ+φ)

3.5.3 Let z = eiθ and w = eiφ and use Exercise 3.4.1.
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3.5.5 The rationalized complex numbers have the form i−12 ,
and 1

10 − i15 .
3.5.7 The line through N ,P ′, and P can be expressed as N +

t(P ′ − N) = (0, 0, 1) + t(X,Y, Z − 1) = (tX, tY, 1 + t(Z − 1)). As
this is a point in the x− y plane, we have that. 1 + t(Z − 1) = 0, or
t = 1

1−Z . Thus, π(P
′) = t(X,Y ) = 1

1−Z (X,Y ).
3.5.9 Let z = (x, y) be a point in the complex plane. Then,

(X,Y, Z) = ( 2x
|z|2+1

, 2y
|z|2+1

,
|z|2−1
|z|2+1

) will get mapped to z from the work

done in exercises 3.4.5 and 3.4.6.
3.5.11 Since |z − z0| = |z − z0|, the function f(z) = z has

the local scale-preserving property. Consider two curves c1 and c

intersecting at z0, parameterized so that c1(0) = c2(0) = z0. Then,
the angle between their tangents is the argument of c′1(0) minus
the argument of c′2(0). Under conjugation, the arguments become
negative, and thus, the difference in the angles between the conjugate
curves becomes negative.

3.6 Birkhoff’s Axiomatic System for Analytic Geometry

3.6.1 First, if A is associated to xA = tA
√

dx2 + dy2, where A =
(x, y) = (x0, y0) + tA(dx, dy), and B is associated to xB in a similar
fashion, then |xA− xB| = |tA− tB|

√

dx2 + dy2. On the other hand,

d(A,B) =
√

(tAdx− tBdx)2 + (tAdy − tBdy)2 =
√

dx2 + dy2|tA−t

3.6.3 Given a point O as the vertex of the angle, set O as the

origin of the coordinate system. Then, identify a ray
−→
OA associated

to the angle θ, with A = (x, y). Let a = || ~A|| =
√

x2 + y2. Then,

sin2(θ) + cos2(θ) = (x
a
)2 + (y

a
)2 = x2+y2

a2
= 1.

3.6.5 Discussion question. One idea is that analytic geometry
allows one to study geometric figures by the equations that define
them. Thus, geometry can be reduced to the arithmetic (algebra)
of equations.
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Chapter 4

Constructions

In this chapter we cover some of the basic Euclidean constructions
and also have a lot of fun with lab projects. The origami project
should be especially interesting, as it is an axiomatic system with
which you can physically interact and explore.

The third section on constructibility may be a bit heavy and ab-
stract, but the relationship between geometric constructibility and
algebra is a fascinating one, especially if you have had some expo-
sure to abstract algebra. Also, any mathematically literate person
should know what the three classical construction problems are, and
how the pursuit of solutions to these problems has had a profound
influence on the development of modern mathematics.

Solutions to Exercises in Chapter 4

4.1 Euclidean Constructions

4.1.1 Use SSS triangle congruence on ∆ABF and ∆DGH.

4.1.3 Use the SSS triangle congruence theorem on ∆ADE and
∆ABE to show that ∠EAB ∼= ∠BAE.

4.1.5 Use the fact that both circles have the same radius.

4.1.7 Let the given line be l and let P be the point not on

25
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Construct the perpendicular m to l through P . At a point Q on
m, but not on l, construct the perpendicular n to m. Theorem 2.8
implies that l and n are parallel.

4.1.9 On
−−→
BA construct A′ such that BA′ = a. On

−−→
BC con-

struct C ′ such that BC ′ = b. Then, SAS congruence gives ∆AB′C
congruent to any other triangle with the specified data.

4.2 Project 6 - Euclidean Eggs

4.2.1 The tangent to one of the circles will meet
←→
AB at C at righ

angles by Theorem 2.36. The tangent to the other circle will also

meet
←→
AB at C at a right angle. Since the perpendicular to

←→
AB at

C is unique, the tangents coincide.

4.2.3 The construction steps are implied by the figure.

4.3 Constructibility

4.3.1 Just compute the formula for the intersection.

4.3.3 Reverse the roles of the product construction.

4.3.5 For
√
3, use a right triangle with hypotenuse 2 and one

side 1. For
√
5, use a right triangle with sides of length 1 and 2.

4.3.7 Consider a
π
. This is less than a.

4.3.9 If a circle of radius r and center (x, y) has x not con-
structible, then (x, y+ r) and (x, y− r) are non-constructible on the
circle. We can use the same reasoning if y is not constructible. If the
center is constructible, then the previous exercise gives at least tw
non-constructible points for a circle of radius r whose center is at the
origin. Add (x, y) to these two points to get two non-constructible
points on the original circle.

4.4 Mini-Project: Origami Construction

For this project, one will need a good supply of square paper. Com-
mercial origami paper is quite expensive. Equally as good paper can
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be made by taking notepads and cutting them into squares using
paper-cutter. (Cutting works best a few sheets at a time)

4.4.1 Given AB, we can fold A onto B by axiom O2. Let
be the fold line of reflection created, and let l intersect AB at C

Then, since the fold preserves length, we have that AC = CB, and
∠ACE ∼= ∠ECB, as show in Fig. 4.1. The result follows.

A

B

C

l

D

Figure 4.1:

4.4.3 Since the reflection fold across t preserves length, we hav
PR = P ′R. Also, the distance from a point to a line is measured
along the perpendicular from the point to the line. Thus, the dis-
tance from R to l is equal to P ′R. Thus, the distance from R to P

equals the distance from R to l and R is on the parabola with focus
P and directrix l.

An interesting result related to this construction would be to
show that t is tangent to the parabola at R. One proof is as follows:

Suppose t intersected at another point R′ on the parabola. Then,
by definition, R′ must have been constructed in the same way that
R was, so there must be a folding (reflection) across t taking P to

some point P ′′ on l such that
←−→
P ′′R′ is perpendicular to l at P ′′, and

intersects t at R′. Then, by a triangle argument, we can show that←−→
PP ′ and

←−→
PP ′′ must both be perpendicular to t at R and R′. Since

perpendiculars are unique, we must have that R = R′.

(To show, for example, that
←−→
PP ′ is perpendicular to t at R, w
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can easily show that ∆PQR ∼= ∆P ′QR by using the angle- and
distance-preserving properties of reflections, and then use a second

congruent triangle argument to show that
←−→
PP ′ crosses t at righ

angles.)
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Chapter 5

Transformational

Geometry

In this chapter we make great use of functional notation and some-
what abstract notions such as 1−1 and onto, inverses, composition,
etc. You may wonder how such computations are related to ge-
ometry, but that is the very essence of the chapter—that we can
understand and investigate geometric ideas with more than one set
of mathematical techniques.

With that in mind, we will make use of synthetic geometric tech-
niques where they are most elegant and can aid intuition, and at
other times we will rely on analytical techniques.

Solutions to Exercises in Chapter 5

5.1 Euclidean Isometries

5.1.1 Define the function f−1 by f−1(y) = x if and only if f(x) = y

Then, f−1 is well-defined, as suppose f(x1) = f(x2) = y. Then,
since f is 1 − 1 we have that x1 = x2. Since f is onto, we hav
that for every y in S there is an x such that f(x) = y. Thus,
f−1 is defined on all of S. Finally, f−1(f(x)) = f−1(y) = x and

29
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f(f−1(y)) = f(x) = y. So, f ◦ f−1 = f−1 ◦ f = idS .

Suppose g was another function on S such that f◦g = g◦f = idS
Then, g ◦ f ◦ f−1 = f−1, or g = f−1.

5.1.3 Since g−1 ◦f−1 ◦f ◦g = g−1 ◦g = id and f ◦g ◦g−1 ◦f−1 =
f ◦ f−1 = id, then g−1 ◦ f−1 = (f ◦ g)−1.

5.1.5 Let T be an isometry and let c be a circle centered at O of
radius r = OA. Let O′ = T (O) and A′ = T (A). Let P be any poin
on c. Then, O′T (P ) = T (O)T (P ) = OP = r. Thus, the image of
under T is contained in the circle centered at O′ of radius r. Let P
be any other point on the circle centered at O′ of radius r. Then,
OT−1(P ′) = T−1(O′)T−1(P ′) = O′P ′ = r. Thus, T−1(P ′) is a poin
on c and every such point P ′ is the image of a point on c, under the
map T .

5.1.7 Label the vertices of the triangle A, B, and C. Then,
consider vertex A. Under an isometry, consider the actual position
of A in the plane. After applying the isometry, A might remain
or be replaced by one of the other two vertices. Thus, there are
three possibilities for the position occupied by A. Once that vertex
has been identified, consider position B. There are now just tw
remaining vertices to be placed in this position. Thus, there are
maximum of 6 isometries. We can find 6 by considering the three
basic rotations by 0, 120, and 240 degrees, and the three reflections
about perpendicular bisectors of the sides.

5.1.9 First, we show that T is a transformation. To show it is
1 − 1, suppose T (x, y) = T (x′, y′). Then, kx + a = kx′ + a and
ky + b = ky′ + b. So, x = x′ and y = y′.

To show it is onto, let (x′, y′) be a point. Then, T (x
′−a
k

, y
′−b
k

) =
(x′, y′).

T is not, in general, an isometry, since if A = (x, y) and B =
(x′, y′) then T (A)T (B) = kAB.

5.1.11 Let ABC be a triangle and let A′B′C ′ be its image under
T . By the previous exercise, these two triangles are similar. Thus,
there is a k > 0 such that A′B′ = kAB, B′C ′ = kBC, and A′C ′ =
kAC. Let D be any other point not on

←→
AB. Then, using triangles
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ABD and A′B′D′ we get that A′D′ = kAD.

Now, let DE be any segment with D not on
←→
AB. Then, using

triangles ADE and A′D′E′ we get D′E′ = kDE, since we know that
A′D′ = kAD.

Finally, let EF be a segment entirely on
←→
AB, and let D be

point off
←→
AB. Then, using trianglesDEF andD′E′F ′ we get E′F ′ =

kEF , since we know that D′E′ = kDE.

Thus, in all cases, we get that T (A)T (B) = kAB.

5.2.1 Mini-Project:Isometries Through Reflection

In this mini-project, you will be led through a guided discovery of
the amazing fact that, given any two congruent triangles, one can
find a sequence of at most three reflections taking one triangle to
the other.

5.2.1 First of all, suppose that C and R are on the same side of←→
AB. Then, since there is a unique angle with side AB and measure

equal to the measure of ∠BAC, then R must lie on
−→
AC. Likewise,

R must lie on
−−→
BC. But, the only point common to these two rays

is C. Thus, R = C.

If C and R are on different sides of
←→
AB, then drop a perpendic-

ular from C to
←→
AB, intersecting at P . By SAS, ∆PAC and ∆PAR

are congruent, and thus ∠APR must be a right angle, and R is the

reflection of C across
←→
AB.

5.2.3 If two triangles (∆ABC and ∆PQR) share no point in
common, then by Theorem 5.6 there is a reflection mapping A to
C, and by the previous exercise, we would need at most two more
reflections to map ∆r(A)r(B)r(C) to ∆PQR.

5.2.2 Reflections

5.2.5 Many example from nature have bilateral symmetry.

5.2.7 Let G be the midpoint of AB. Then ∆AED ∼= ∆BCD b

SAS and ∆AGD ∼= ∆BGD by SSS. Thus,
←→
DG is the perpendicular
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bisector of AB, and reflection across
←→
DG takes A to B. Also,

←→
DG

must bisect the angle at D and by the previous exercise the bisector
is a line of reflection. This proof would be easily extendable to
regular n-gons, for n odd, by using repeated triangle congruences to
show the perpendicular bisector is the angle bisector of the opposite
vertex.

A B

E
C

D

G

Figure 5.1:

5.2.9 Suppose that a line of symmetry l for parallelogramABCD

is parallel to side AB. Then, clearly reflection across l cannot map
A to B, as this would imply that l is the perpendicular bisector of
AB.

If reflection mapped A to C, then l would be the perpendicular
bisector of a diagonal of the parallelogram. But, since l is parallel
to AB, this would imply that the diagonal must be perpendicular to
AB as well. A similar argument can be used to show that the other
diagonal (BD) must also be perpendicular to AB. If this were the
case, one of the triangles formed by the diagonals would have angle
sum greater than 180 degrees, which is impossible.

Thus, reflection across l must map A to D, and l must be the
perpendicular bisector of AD. Clearly, using the property of par-
allels, we get that the angles at A and D in the parallelogram are
right angles.



i

i

“book” — 2011/8/23 — 19:41 — page 33 — #39

SOLUTIONS TO EXERCISES IN CHAPTER 5 33

5.2.11 Let r be a reflection across
←→
AB and let C be a poin

not on
←→
AB. Then, r(C) is the unique point on the perpendicular

dropped to
←→
AB at a point P on this line such that CP = r(C)P

with r(C) 6= C. Now, r(r(C)) is the unique point on this same
perpendicular such that r(C)P = r(r(C))P , with r(r(C)) 6= r(C).
But since r(C)P = CP and C 6= r(C), then r(r(C)) = C. But, then
r ◦ r fixes three non-collinear points A, B, and C, and so must b
the identity.

5.2.13 Let A and B be distinct points on l. Then, rm ◦ rl
rm(rm(A)) = rm(rl(A)) = rm(A) and likewise, rm◦rl ◦rm(rm(B)) =
rm(B). Thus, the line l′ through rm(A) and rm(B) is fixed by rm
rl ◦ rm and this triple composition must be equivalent to reflection
across l′.

5.2.15 Drop a perpendicular from O to the line intersecting at
Q. By SAS we get the length from O to P is the same as the length
from O′ to P . Thus, to minimize the total length to V we just
minimize the length from O′ to P to V . But, the shortest path will
be a straight line, so P must be located so that it is on the line
through O′ and V . Using congruent triangles and vertical angles,
we see that the shortest path occurs when the two angles made at
P are congruent.

5.3 Translations

5.3.1 There are few examples in nature that have perfect trans-
lational symmetry. One example might be the atoms in a crystal
atomic lattice. But there are some partial examples, like the legs on
a millipede.

5.3.3 Since (r2 ◦ r1) ◦ (r1 ◦ r2) = id, and (r1 ◦ r2) ◦ (r2 ◦ r1) = id

then r2 ◦ r1 is the inverse of r1 ◦ r2. Also, if T has translation vector
v, then T (x, y) = (x, y) + v. Let S be the translation defined b
S(x, y) = (x, y)−v. Then, S ◦T (x, y) = ((x, y)+v)−v = (x, y) and
T ◦ S((x, y)− v) + v = (x, y). Thus, S is the inverse to T .

5.3.5 Let T1 have translation vector v1 and T2 have translation
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vector v2. Then, T1 ◦ T2(x, y) = T1((x, y) + v2) = (x, y) + (v2 + v1),
which is the same asT1 ◦ T2(x, y).

5.3.7 Let (x,K) be a point on the line y = K. If T is a trans-
lation with translation vector v = (0,−K), then, by exercise 5.3.3,
T−1 has translation vector of−v = (0,K). Thus, T−1◦rx◦T (x,K) =
T−1 ◦ rx(x, 0) = T−1(x, 0) = (x,K). So, T−1 ◦ rx ◦ T fixes the line
y = K and so must be the reflection across this line. The coordinate
equation for r is given by T−1 ◦ rx ◦ T (x, y) = T−1 ◦ rx(x, y −K) =
T−1(x,−y +K) = (x,−y + 2K). So, r(x, y) = (x,−y + 2K).

5.3.9 Let T be a translation with (non-zero) translation vector
parallel to a line l. Let m be perpendicular to l at point P . Let
n be the perpendicular bisector of PT (P ), intersecting PT (P ) at
point Q. Then, rn, reflection about n maps P to T (P ). Consider
rn ◦ T . We have rn ◦ T (P ) = P . Let R 6= P be another poin
on m. Then, PRT (R)T (P ) is a parallelogram, and thus ∠PRT (R
and ∠RT (R)T (P ) are right angles. Let S be the point where
intersects RT (R). Then, ∠RSQ is also a right angle. Also, by
congruent triangle argument, we have RS ∼= ST (R), and so n is the
perpendicular bisector of RT (R) and rn ◦ T (R) = R. Since rn ◦ T
fixes two points on m we have rn ◦ T = rm, or T = rn ◦ rm.

T(P)Pl

m

Q

n

R T(R)S

Figure 5.2:
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5.4 Rotations

5.4.1 First,

T−1 ◦Rotφ ◦ T (C) = T−1 ◦Rotφ ◦ T (x, y)
= T−1 ◦Rotφ(0, 0)

= T−1(0, 0)

= (x, y)

= C

Suppose T−1 ◦ Rotφ ◦ T fixed another point P . Then, Rotφ
T (P ) = T (P ), which implies that T (P ) = (0, 0), or P = T−1(0, 0) =
(x, y) = C. Thus, T−1 ◦ Rotφ ◦ T must be a rotation. What is the
angle for this rotation? Consider a line l through C that is parallel
to the x-axis. Then, T will map l to the x−axis and Rotφ will map
the x-axis to a line m making an angle of φ with the x-axis. Then,
T−1 will preserve this angle, mapping m to a line making an angle
of φ with l. Thus, the rotation angle for T−1 ◦Rotφ ◦ T is φ.

5.4.3 A book on flowers or diatoms (algae) would be a goo
place to start.

5.4.5 By the preceding exercise, the invariant line must pass
through the center of rotation. Let A be a point on the invarian

line. Then, RO(A) lies on
←→
OA and OA ∼= ORO(A). Either A and

RO(A) are on the same side of O or are on opposite sides. If they are
on the same side, then A = RO(A), and the rotation is the identity
which is ruled out. If they are on opposite sides, then the rotation
is 180 degrees. If the rotation is 180 degrees, then for every poin
A 6= O we have that A, O, and RO(A) are collinear, which means

that the line
←→
OA is invariant.

5.4.7 Let R = rl ◦ rm be a rotation about the point P where
l and m intersect. Then, since (rl ◦ rm) ◦ (rm ◦ rl) = id and (rm
rl) ◦ (rl ◦ rm) = id, then R−1 = rm ◦ rl, and the angle of rotation
is the same, but in reverse direction, as the angle is twice the angle
between the lines of reflection.
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5.4.9 Consider R−1 ◦R′. This map fixes O and A and thus fixes←→
OA. So, either R−1 ◦ R′ is a reflection or it is the identity. Since
the composition of two rotations about a common point is again
rotation (by the preceding exercise), then R−1 ◦ R′ = id and the
result follows.

5.4.11 The hint is over-kill. H is clearly a rotation, by the
definition of rotations. The angle of rotation is twice the angle made
by the lines of reflection, or twice a right angle, or 180.

5.4.13 Note that T ◦ HA ◦ T−1 maps T (A) back to itself. If
this map fixes any other point P , then HA ◦T−1(P ) = T−1(P ), and
so T−1(P ) = A or P = T (A). Thus, T ◦ HA ◦ T−1 is a rotation
about T (A). Then, any line through T (A) will get mapped to a line
through A by T−1. Then HA will map this new line to itself, and
T will map this half-turned line back to the original line. Thus, b
exercise 5.4.5, T ◦HA ◦ T−1 is a half-turn about T (A).

5.5 Project 7 -Quilts and Transformations

This project is another great opportunity for the future teachers in
the class to develop similar projects for use in their own teaching.
One idea to incorporate into a high school version of the project is
to bring into the class the cultural and historical aspects of quilting.

5.5.1 In your Project Report give a report of how you did the
construction.

5.5.3 For bilateral symmetry, any reflection line must pass through
the center of the quilt pattern. The only patterns which have suc
symmetry are: 25-Patch Star (horizontal, vertical, 45 degree, and
−45 degree lines of symmetry) and Flower Basket (45 degree line of
symmetry).

Star Puzzle, Dutch Man’s Puzzle, and 25-Patch Star all hav
rotational symmetry of 90 (and thus 180 and 270) degrees.

Thus, 25-Patch Star is the only pattern with both rotational and
bilateral symmetry.
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5.6 Glide Reflections

5.6.1 As with translations, it will be hard to find a perfect example
of a glide symmetry in nature. But, the are many plants whose
branches alternate in a glide fashion.

5.6.3 Suppose m is invariant. Then, the glide reflection can
be written as G = TAB ◦ rl = rl ◦ TAB. If G(G(m)) = m, then
(TAB ◦ rl) ◦ (rl ◦ TAB)(m) = T2AB(m) = m. So, m must be parallel
or equal to l, if it is invariant under T2AB. Suppose m is parallel
to l. Then, TAB(m) = m. So, G(m) = rl ◦ TAB(m) = rl(m). But,
reflection of a line m that is parallel to l cannot be equal to m. Thus,
the only line invariant under the glide reflection is l itself.

5.6.5 The glide reflection can be written as G = TAB ◦ rl =
rl ◦ TAB. So, G ◦G = (TAB ◦ rl) ◦ (rl ◦ TAB) = T2AB.

5.6.7 The set does not include the identity element.

5.6.9 The identity (rotation angle of 0) is in the set. The com-
position of two rotations about the same point is again a rotation b
exercise 5.4.8. The inverse to a rotation is another rotation about
the same point by exercise 5.4.7. Since rotations are functions, as-
sociativity is automatic.

5.6.11 A discussion and diagram would suffice for this exercise.

5.6.13 By using the result in Exercise 5.2.14 repeatedly, we can
reduce any even (non-identity) isometry to the product of two re-
flections. Also, the identity can be written as the product of tw
reflections, the product of a reflection with itself. An odd isometry
can be reduced to the product of three or one reflections. Since
rotations and translations cannot be equivalent transformations to
reflections and glide reflections, then an isometry cannot be both
even and odd.

5.7 Structure and Representation of Isometries

This section is a somewhat abstract digression into ways of rep-
resenting transformations and of understanding their structure as
algebraic elements of a group. An important theme of the section is
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the usefulness of the matrix form of an isometry, both from a the-
oretical viewpoint (classification), as well as a practical viewpoin
(animation in computer graphics).

Matrix methods (and thus transformations) are used heavily in
the field of computer animation. There are many excellent textbooks
in computer graphics that one could use as reference for this purpose.
For example, the book by F.S. Hill listed in the bibliography of the
text is a very accessible introduction to the subject.

5.7.1 Let G1 = Tv1◦rl1 and G2 = Tv2◦rl2 be two glide reflections.
If G1 ◦ G2 is a translation, say Tv, then, since G1 ◦ G2 = Tv =
(Tv1 ◦ rl1) ◦ (rl2 ◦ Tv2), then Tv−v1−v2 = rl1 ◦ rl2 and thus l1||l2.

On the other hand, if the lines are parallel, then G1 ◦ G2 =
(Tv1 ◦ rl1) ◦ (rl2 ◦ Tv2) = Tv1 ◦ Tv ◦ Tv2 , for some vector v.

If the lines intersect, then the composition of rl1 with rl2 will b
a rotation, say R, and G1◦G2 = (Tv1 ◦rl1)◦(rl2 ◦Tv2) = Tv1 ◦R◦Tv2

This last composition yields a rotation, by Theorem 5.20.

5.7.3 First, f ◦ rm ◦ f−1(f(m)) = f(m), so f(m) is a fixed line
for f ◦rm◦f−1. Also, (f ◦rm◦f−1)2 = f ◦rm◦f−1◦f ◦rm◦f−1 = id

Thus, f ◦rm◦f−1, which must be a reflection or glide reflection from
looking at Table 5.3, is a reflection. Since it fixes f(m) it must b
reflection across f(m).

5.7.5 Using the previous exercises we have f ◦ rm ◦ TAB ◦ f−1 =
f ◦ rm ◦ f−1 ◦ f ◦ TAB ◦ f−1 = rf(m) ◦ Tf(A)f(B).

5.7.7 Rotation of (x, y) by an angle φ yields (x cos(φ)−y sin(φ),
y cos(φ)). Multiplying x + iy by cos(φ) + i sin(φ) yields the same
point. Translation by v = (v1, v2) yields (x + v1, y + v2). Adding
v1 + iv2 to x+ iy yields the same result. Finally, reflection across
is given by rx(x, y) = (x,−y). Complex conjugation sends x+ iy to
x− iy. Clearly, this has the same effect.

5.7.9 Tv ◦Rβ(z) = (eiβz)+v. To find the fixed point set (eiβz)+
v = z and solve for z.
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5.8 Project 8 - Constructing Compositions

The purpose of this lab is to make concrete the somewhat abstract
notion of composition of isometries. In particular, by carrying out
the constructions of the lab, you will see how the conditions on
compositions of rotations found in Table 5.3 arise naturally.

If you have difficulty getting started with the first proof, think
about how we can write a rotation as the composition of two re-
flections through the center of rotation. Note that the choice of
reflection lines is not important – one can choose any two lines as
long as they make the right angle, namely half the desired rotation
angle.

5.8.1 A rotation can be expressed as the composition of tw
reflections about lines through the center of rotation, as long as the
reflection lines make an angle of half the reflection angle. Since m

and n are bisectors of the rotation angles, then, RA,∠EAB = rn ◦r←→AB
and RB,∠ABE = r←→

AB
◦ rm, taking into the account the orientation

of the rotation angles.
5.8.3 The rotation angle γ is twice the angle at O in ∆AOB

This angle is ∠BOA. (Note - positively oriented) Then, taking care
to measure orientation correctly, we have

γ = 2(180− (∠BAO + ∠OBA)

= 360 + (2∠OAB + 2∠ABO)

= 360 + (∠EAB + ∠ABE)

Thus, γ = (∠EAB + ∠ABE) (mod360).
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Chapter 6

Symmetry

This chapter is quite algebraic in nature—focusing on the differen
discrete symmetry groups that arise for frieze patterns and wallpaper
patterns.

Solutions to Exercises in Chapter 6

6.1 Finite Plane Symmetry Groups

6.1.1 Flowers and diatoms make good examples.

6.1.2 The symmetry group is the dihedral group of order 4.
(4 rotations generated by a rotation of 90 degrees, and reflections
generated by a reflection across a perpendicular bisector of a side)
This gives 8 symmetries. There are no more, since if we label the
vertices and fix a position for a vertex to occupy, we have 4 choices
for the vertex to be placed in that position and only two choices
for the rest of the vertices. Thus, a maximum of eight symmetries
possible.

6.1.3 The dihedral group of order 5. (5 rotations generated b
a rotation of 72 degrees, and reflections generated by a reflection
across a perpendicular bisector of a side) This gives 10 symmetries.
There are no more, since if we label the vertices and fix a position

41
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for a vertex to occupy, we have 5 choices for the vertex to be placed
in that position and only two choices for the rest of the vertices.
Thus, a maximum of ten symmetries possible.

6.1.5 Using an argument like that used in exercises 6.1.2 and
6.1.3, we know there are at most 2n symmetries. Also, by the work
done in section 5.4 we know there are n rotations, generated by
rotation of 360

n
, that will be symmetries. Let r be a reflection across

a perpendicular bisector of a side. This will be a reflection, as will
all n compositions of this reflection with the n rotations. This gives
2n different symmetries.

6.1.7 The number of symmetries is 2n. The only symmetries
that fix a side are the identity and a reflection across the perpen-
dicular bisector of that side. The side can move to n different sides.
Thus, the stated product is 2n as claimed.

6.2 Frieze Groups

6.2.1 Since γ2 = τ , then < τ, γ,H > is contained in < γ,H >

Also, it is clear that < γ,H > is contained in < τ, γ,H >. Thus,
< τ, γ,H >=< γ,H >.

6.2.3 Let ru and ru′ be two reflections across lines perpendicular
to m. Then, the composition ru ◦ ru′ must be a translation, as these
lines will be parallel. Thus, ru◦ru′ = T k for some k, and ru′ = ru◦T k

6.2.5 Consider g2. This must be a translation, so g2 = Tkv for
some k where Tv is the fundamental translation. Then, g = T k

2
v◦rm

where m is the midline. Suppose k
2 is an integer, say k

2 = j. Then,
since T(v−jv) is in the group, we have T(v−jv)◦g = T(v−jv)◦T k

2
v◦rm =

Tv ◦ rm is in the group.

Otherwise, k
2 = j + 1

2 for some integer j. We can find T−jv in
the group such that T−jv ◦ g = T v

2

◦ rm is in the group.

6.2.7 The composition rv ◦ ru must be a translation. Also,
rv ◦ ru(A) = rv(A) = C, then the translation vector must be ~AC

But, the length of AC is twice that of AB. So, we get that 2 ~AB =
k′v for some k′. Now, either k′ is even or it is odd. The result



i

i

“book” — 2011/8/23 — 19:41 — page 43 — #49

SOLUTIONS TO EXERCISES IN CHAPTER 6 43

follows.

6.2.9 From Table 4.1 we know that τ ◦ H or H ◦ τ is either
translation or a rotation, so it must be either τk for some k or H
for A on m. Thus, any composition of products of τ and H can b
reduced ultimately to a simple translation or half-turn, or to some
τ j ◦HB or HB ◦ τj , which are both half-turns. Thus, the subgroup
generated by τ and H cannot contain rm or ru or γ and none of
< τ, rm > or < τ, ru > or < τ, rm > can be subgroups of < τ,H >

6.2.11 The compositions τk ◦ rm or rm ◦ τk generate glide re-
flections with glide vectors kv. The composition of τ with suc
glide reflections generates other glide reflections with glide vectors
(k + j)v. The composition of rm with a glide in the direction of
m will generate a translation. Thus, compositions of the three
types of symmetries—glides, rm, and τk—will only generate sym-
metries within those types. Thus, < τ, γ > cannot be a subgroup
of < τ, rm >, since γ has translation vector of v

2 which cannot b
generated in < τ, rm >. Also, neither < τ, ru > nor < τ,H > can
be subgroups of < τ, rm >.

6.2.13 First Row: < τ >, < τ, γ >. Second Row: < τ, γ,H >

< τ, ru >. Third Row: < τ, rm, H >, < τ,H >. Last Row: <

τ, rm >.

6.3 Wallpaper Groups

6.3.1 The first is rectangular, the second rhombal, and the third is
square.

6.3.3 The translation determined by f2 will be in the same di-
rection as T , so we do not find two independent directions of trans-
lation.

6.3.5 The lattice for G will be invariant under rotations about
points of the lattice by a fixed angle. By the previous problem, these
rotations must be half-turns. By Theorem 6.14 the lattice must b
Rectangular, Centered Rectangular, or Square.

6.3.7 Let C be the midpoint of the vector v = ~AB, where v is one
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of the translation vectors for G. Let m1 be a line perpendicular to←→
AB at A. Then, Tv = rm1

◦ rm′

1
where m′1 is a line perpendicular to

←→
AB at the midpoint of AB. But since rm1

is inG, then rm1
◦Tv = rm

is in G. Likewise, we could find a line m′2 perpendicular to the
other translation vector w = ~AC at its midpoint, yielding another
reflection rm′

2
. The formulas for these two reflections are rm′

1
=

rm1
◦ Tv and rm′

2
= rm2

◦ Tw.

6.3.9 In the exercise 6.3.8 we saw that the group of symmetries
can be generated from reflections half-way along the translation vec-
tors. Thus, if we reflect the shaded region, we must get another part
of the pattern. Thus, three reflections of the shaded area will fill up
the rectangle determined by v and w and the rest of the pattern will
be generated by translation.

6.3.11 If A = lv + mw and B = sv + tw, then 0 ≤ s, t ≤ 1.
The length between A and B is the length of the vector ~B −A =
(s− l)v+(t−m)w. This length squared is the dot product of ~B −A

with itself, i.e., (s− l)2(v•v)+2(s− l)(t−m)(v•w)+(t−m)2(w•w).
If v •w > 0, then this will be maximal when both (s− l) and (t−m

are maximal. This occurs when (s− l) = 1 and (t−m) = 1, whic
holds only if s = 1 = t and l = m = 0. If v•w < 0, we need (s− l) to
be as negative as possible, and (t−m) to be as positive as possible
(or vice-versa). In either case, we get values of 0 or 1 for s, t, l, and
m.

6.3.13 A single straight line would have translational symmetries
of arbitrarily small size.

6.5 Project 9 - Constructing Tessellations

Tiling is a fascinating subject. If you would like to know more about
the mathematics of tiling, a good supplementary source is Tilings

and Patterns, by Grunbaum and Shephard.

A modern master of the art of tiling is M.C. Escher. A goo
resource for his work is Doris Schattschnieder’s book M. C. Escher,

Visions of Symmetry.
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6.5.1 The symmetry group is p4.
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Chapter 7

Non-Euclidean Geometry

The discovery of non-Euclidean geometry is one of the most impor-
tant events in the history of mathematics. The book by Boyer and
Merzbach and the University of St. Andrews web site, both listed
in the bibliography of the text, are excellent references for a deeper
look at this history.

Solutions to Exercises in Chapter 7

In section 7.2 we see for the first time the relevance of our earlier
discussion of models in Chapter 1. The change of axioms in Chap-
ter 7 (replacing Euclid’s fifth postulate with the hyperbolic parallel
postulate) requires a change of models. As you work through this
section, it is important to recall that, in an axiomatic system, it is
not important what the terms actually mean; the only thing that
matters is the relationships between the terms.

We introduce two different models at this point to help you rec-
ognize the abstraction that lies behind the concrete expression of
points and lines in theses models.

47
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7.2.2 Mini-Project: The Klein Model

It may be helpful to do the constructions (lines, etc) of the Klein
model on paper as you read through the material.

7.2.1 Use the properties of Euclidean segments.

7.2.3 The special case is where the lines intersect at a boundary
point of the Klein disk. Otherwise, use the line connecting the poles
of the two parallels to construct a common perpendicular.

7.3 Basic Results in Hyperbolic Geometry

In this section it is important to note the distinction between points
at infinity and regular points. Omega triangles share some prop-
erties of regular triangles, like congruence theorems and Pasch-lik
properties, but are not regular triangles—thus necessitating the the-
orems found in this section.

7.3.1 Use the interpretation of limiting parallels in the Klein
model.

7.3.3 First, if m is a limiting parallel to l through a point P

then rl(m) cannot intersect l, as if it did, then r2l (m) = m would
also intersect l. Now, drop a perpendicular from rl(P ) to l at Q

and consider the angle made by Q, rl(P ), and the omega point of
rl(m). If there were another limiting parallel (n) to l through rl(P
that lies within this angle, then by reflecting back by rl we would
get a limiting parallel rl(n) that lies within the angle made by Q

P and the omega point of l, which is impossible. Thus, rl(m) must
be limiting parallel to l and reflection maps omega points to omega
points, as rl maps limiting parallels to l to other limiting parallels.
Also, it must fix the omega point, as it maps limiting parallels on
one side of the perpendicular dropped to l to limiting parallels on
that same side.

7.3.5 Let P be the center of rotation and let l be a line through
P with the given omega point Ω. (Such a line must exist as Ω
must correspond to a limiting parallel line m, and there is always
limiting parallel to m through a given point P ) Then, we can write
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R = rn ◦ rl for another line n passing through P . But, since rl fixes
Ω, and R does as well, then, rn must fix Ω. But, if n and l are not
coincident, then n is not limiting parallel to l and thus cannot hav
the same omega points as l. By the previous exercise, rn could not
fix Ω. Thus, it must be the case that n and l are coincident and
is the identity.

7.3.7 Let PQΩ be an omega triangle and let R be a point interior

to the triangle. Drop a perpendicular from Q to
←→
PΩ at S. Then,

either R is interior to triangle QPS, or it is on
←→
QS, or it is interior

to ∠QSΩ. If it is interior to ∆QPS it intersects
←→
PΩ by Pasch’s

axiom for triangles. If it is on
←→
QS it obviously intersects

←→
PΩ. If it

is interior to ∠QSΩ, it intersects
←→
PΩ by the definition of limiting

parallels.

P

Q

R

T Ω
S

Figure 7.1:

7.3.9 Let l be the line passing through R. Then, either l passes
within Omega triangle PRΩ or it passes within QRΩ. In either case,
we know by Theorem 7.5 that l must intersect the opposite side, i.e.
it must intersect PΩ or QΩ.

7.3.11 Suppose we had another segment P ′Q′ with P ′Q′ ∼= PQ

and let l′ be a perpendicular to P ′Q′ at Q′. Let
←−→
P ′R′ be a limiting

parallel to l′ at P ′. Then, by Theorem 7.8, we know that ∠QPR ∼=
∠Q′P ′R′ and thus, the definition of this angle only depends on h

the length of PQ.

7.3.13 Suppose a(h) = a(h′) with h 6= h′. We can assume
that h < h′. But, then the previous exercise would imply that
a(h) > a(h′). Thus, if a(h) = a(h′) then h = h′.
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7.4 Project 10 - The Saccheri Quadrilateral

As you do the computer construction of the Saccheri Quadrilateral,
you may experience a flip of orientation for your construction when
moving the quad about the screen. The construction depends on
the orientation of the intersections of circles and these may switc
as the quad is moved. A construction of the Saccheri quad that does
not have this unfortunate behavior was searched for unsuccessfully
by the author. A nice challenge problem would be to see if you can
come up with a better construction. If you can, the author would
love to hear about it!

7.4.1 Show that ∆ADB and ∆BCA are congruent, and then
show that ∆ADC and ∆BDC are congruent.

A B

CD

Figure 7.2:

7.5 Lambert Quadrilaterals and Triangles

7.5.1 Referring to figure 7.6, we know ∆ACB and ∆ACE are con-
gruent by SAS. Thus, ∠ACB ∼= ∠ECA. Since ∠ACD ∼= ∠FCA

and both are right angles, then ∠BCD ∼= ∠FCE. Then, ∆BCD

and ∆FCE are congruent by SAS. We conclude that BD ∼= FE

and the angle at E is a right angle.

7.5.3 Create two Lambert quadrilaterals from the Saccheri quadri-
lateral, and then use Theorem 7.13.

7.5.5 Since the angle at O is acute, then OAA′ and OBB′ are
triangles. Also, since OA < OB, then A is between O and B, and
likewise A′ is between O and B′. Thus, the perpendicular n at A to←→
AA′ will enter ∆OBB′. By Pasch’s axiom it must intersect OB′ or
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BB′. It cannot intersect OB′ as n and
←−→
OB′ must be parallel. Thus,

n intersects BB′ at C. Then, A′ACB′ is a Lambert Quadrilateral
and B′C > A′A. Since C is between B and B′ we have B′B > A′A

7.5.7 Let m be right limiting parallel to l at P and let P ′ b
a point on m to the right of P (i.e. in the direction of the omega
point). Let Q and Q′ be the points on l where the perpendiculars
from P and P ′ to l intersect l.

We claim that m∠QPP ′ < m∠Q′P ′R where R is a point on m to
the right of P ′. If these angles were equal we would have PQ ∼= P ′Q
by Exercise 7.3.11, and thus QPP ′Q′ would be a Saccheri quadri-
lateral, which would imply that ∠Q′P ′R is a right angle, which is
impossible. If m∠QPP ′ > m∠Q′P ′R, then PQ < P ′Q′ by exercise
7.3.12, which would imply that we could find a point S on P ′Q′ with
PQ = Q′S, yielding Saccheri quadrilateral PQQ′S. Then, ∠PSQ

must be acute, which contradicts the Exterior angle theorem for
∆PSP ′.

P

P’

Q Q’

R

l

m

S

Figure 7.3:

Thus, m∠QPP ′ < m∠Q′P ′R, and the result follows from exer-
cise 7.3.12.

7.5.9 If they had more than one common perpendicular, then
we would have a rectangle.

7.5.11 Suppose Saccheri QuadrilateralsABCD and EFGH hav
AB ∼= EF and ∠ADC ∼= ∠EHG. If EH > AD then we can find
on EH and J on FG such that EI ∼= FJ ∼= AD. Then, by repeated
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application of SAS on sub-triangles of ABCD and EIJF we can
show that these two Saccheri Quadrilaterals are congruent. But,
this implies that the angles at H and I in quadrilateral IHGJ are
supplementary, as are the angles at G and J , which means that w
can construct a quadrilateral with angles sum of 360. This contra-
dicts Theorem 7.15, by considering triangles created by a diagonal
of IHGJ .

A B

D

C

E F

H

GI

J

Figure 7.4:

7.5.13 No. To construct a scale model, we are really constructing
a figure similar to the original. That is, a figure with corresponding
angles congruent, and length measurements proportional by a non-
unit scale factor. But, Theorem 7.18 implies that any such scale
model must have lengths preserved.

7.6 Area in Hyperbolic Geometry

In this section we can refer back to the mini-project we did on area
in Chapter 2. That discussion depended on rectangles as the basis
for a definition of area. In hyperbolic geometry, no rectangles exist,
so the next best shape to base area on is the triangle. This explains
the nature of the theorems in this section.

7.6.1 Let J be the midpoint of A′′B and suppose that
←→
EF cuts

A′′B at some point K 6= J . Then, on
←−→
E′′J we can construct a second

Saccheri Quadrilateral by the method of dropping perpendiculars

from B and C to
←−→
E′′J . Now, BC is the base of the original Saccheri

Quadrilateral BCIH and the new Saccheri Quadrilateral. Thus, if
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is the perpendicular bisector of BC, then n meets
←−→
E′′F and

←−→
E′′J at

right angles. Since E′′ is common to both curves, we get a triangle
having two right angles, which is impossible.

A

C

B

E

F
I

H
E’’

A’’

K

J

n

Figure 7.5:

7.6.3 This question can be argued both ways. If we could mak
incredibly precise measurements of a triangle, then we could pos-
sibly measure the angle sum to be less than 180. However, since
the universe is so vast, we would have to have an incredibly large
triangle to measure, or incredibly good instruments. Also, we could
never be sure of errors in the measurement overwhelming the actual
differential between the angle sum and 180.

7.7 Project 11 - Tiling the Hyperbolic Plane

A nice artisitic example of hyperbolic tilings can be found in M. C.
Escher’s Circle Limit figures. Consult Doris Schattschnieder’s book
M. C. Escher, Visions of Symmetry for more information about
these tilings.

7.7.1 Reasoning as we did on Page 261 of the text, we see that
if we have k regular n-gons meeting at a common vertex, then

180n < 360 + 2nα
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where α = 360
2k . Then,

360

k
> 180 =

360

n

and dividing by 360 and re-arranging gives

1

n
+

1

k
>

1

2

Thus, since 1
3 + 1

3 > 1
2 we have that a (3, 3) tiling is possible.

7.7.3 In a (6, 5) tiling we have regular hexagons meeting 5 at
a vertex. The interior angles of the hexagons must be 360

5 = 72.
Triangulating such a hexagon by triangles to the center, we see that
the central angle must be 60 degrees and the base angles of the
isosceles triangles must be 36 degrees (half the interior angle).

Thus, to build the tiling we start with a triangle of angles 60,
36, and 36 and continue the construction just as we did in the lab.
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Chapter 8

Non-Euclidean

Transformations

In this chapter we extend our notion of isometry from Euclidean
geometry to hyperbolic geometry. The discussion on pages 316-318
is intended to make the subsequent focus on Möbius transformations
a natural condition for carrying out this extension.

Section 8.1 might seem to be a side-track, but it is necessary
groundwork material needed to put the subsequent development of
isometries on a firm footing.

Solutions to Exercises in Chapter 8

8.2 Isometries in the Poincaré Model

In this section we see what isometries look like in the Poincar
Model. We use the principles of Klein’s Erlanger Programm here.
That is, we are aboe to prove general results about figures by trans-
forming the figures to “nice” locations and proving the result there.

8.2.1 Let G be the set of rigid motions. Let f(z) = eiφ1z+b1 and
g(z) = eiφ2z+ b2. Then, g ◦f(z) = eiφ2(eiφ1z+ b1)+ b2 = eiφ1+φ2z+
(eiφ2b1+b2) and thus g◦f(z) is in G. Since f−1(z) = e−iφ1z−e−iφ1b

55
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then f−1 is in G. If φ = 0 and b = 0 we get the identity in G. Lastly
associativity is automatic, as function composition is associative.

8.2.3 By Theorem 8.3 we can find a transformation such that
the points 1,−1, and i go to 1, ∞, and 0. This transformation is
f(z) = z−i

z+1
2

1−i . Also, g(z) = z
z+1

2
1 takes 1, −1, and 0 to 1, ∞, and

0. Then, g−1 ◦ f is the desired transformation by Theorem 8.7.
8.2.5 Choose a = 1 = d and b = c = 0 in f(z) = ax+b

cz+d
.

8.2.7 Because function composition is associative.
8.2.9 Let P = z0 and Q = z1. Let f(z) = z−z0

z0−1 . Then, f(z0) =

0 and f is a hyperbolic isometry. Next, let g(z) = z−z1
z1−1 . Then,

g(z1) = 0 and g is a hyperbolic isometry. The composition g−1 ◦
maps P to Q.

8.2.11 Let l be a hyperbolic line from P to Q. We can find
hyperbolic transformation that maps P to the origin (see the expla-
nation for exercise 8.2.9). If the transformed line does not lie along
the axis, we can transform it to the axis by a rotation. The cross-
ratio is invariant under both of these transformations. Clearly, the
cross-ratio defined for points on the x-axis is real. Also, the cross-
ratio will look like 1

−1
b+1
b−1 which is always positive.

8.2.13 Since dH is invariant under hyperbolic isometries we hav
dH(z0, z1) = dH(g(z0), g(z1)). Since, g(z1) = 0 we have by Theorem
6.12

dH(z0, z1) = ln(
1 + |g(z0)|
1− |g(z0)|

)

= ln(
1 + |z0−z1|

|1−z0z1|

1− |z0−z1|
|1−z0z1|

)

Finding a common denominator in the last equation yields the
result.

8.2.15 As in the proof of Theorem 8.11, we know that

dP (z0, z1) = | ln(z0 − w1

z0 − w0

z1 − w0

z1 − w1
)|

= | ln((z0, z1, w1, w0))
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for z0 and z1 in the disk, where w0 and w1 are the points of intersec-
tion of the circle through z0 and z1 (call this circle c) with the unit
circle. Let z∗0 and z∗1 be the inverse points of z0 and z1 with respect
to c. Then, by the proof of Lemma 8.8 we have

dP (z
∗
0 , z
∗
1) = | ln((z∗0 , z∗1 , w1, w0))|

= | ln((z0, z∗1 , w1, w0))|

But, (z0, z∗1 , w1, w0) = (z0, z
∗
1 , w1, w0), as z0, z1, w0, and w1 lie on

the same circle. Thus,

dP (z
∗
0 , z
∗
1) = | ln((z0, z∗1 , w1, w0))|

= | − ln((z∗1 , z0, w1, w0))|
= | ln((z∗1 , z0, w1, w0))|
= | ln((z1, z0, w1, w0))|

Again, (z1, z0, w1, w0) = (z1, z0, w1, w0) and so,

dP (z
∗
0 , z
∗
1) = | ln((z1, z0, w1, w0))|

= | − ln((z0, z1, w1, w0))|
= dP (z0, z1)

To show that inversion is a reflection across c, we just note that
inversion preserves the circle of inversion, and thus fixes the Poincar
line defined by c.

8.3 Isometries in the Klein Model

In section 8.2 we see isometries treated in a very functional way—w
have formulas for isometries in the Poincaré disk defined by complex
rational functions. This section serves as a nice contrast in that
isometries will be defined in a very geometric way through the use
of poles. Also, isometries are defined by starting with reflections, in
the same way isometries were developed in Chapter 5.
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8.3.1 Let t be the Klein line through P and P ′, and construct
the pole of t. Let Ω be the omega point where the Euclidean line
through the pole of t and P meets the boundary circle (on the other
side of t from the pole of t). Let Ω′ be the omega point where the
Euclidean line through the pole of t and P ′ meets the boundary
circle (on the same side of t from the pole of t). (Refer to Fig. 8.1.)
Then, the point Q where ΩΩ′ intersects t is the midpoint of PP

This can be seen by using the angle-angle congruence theorem for
Omega triangles. The line l through Q and the pole of t will be the
perpendicular bisector of PP ′.

l

Pole(l)

P

t

Q

Pole(t)

P’

Ω

Ω’

Figure 8.1:

8.3.3 One possible construction is illustrated in Fig. 8.2. Let
AB be a diameter of the Klein disk and let A be a point not at the
center. Let B be the reflection of A across a diameter perpendicular
to AB and construct two Klein lines (l and m) at A and B that are
perpendicular to AB. Construct the poles C and D to these lines

and let
−−→
CE be a ray from C intersecting l at E. This ray will create
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Klein line n. Then, there will be a common perpendicular (
←→
GH) to

m and n, using the result from Ex 8.3.2. Also, this line must be on
the same side of AB as E is. Then, AEGHB is a pentagon with
five right angles.

C

l

m

n

D

F

G

E A

B

H

Figure 8.2:

8.3.5 We know from the construction of a Klein reflection that r
will map a point P to a point P ′ that lies on a line perpendicular to
l. Thus, if P is already on a perpendicular t to l, then its reflection
is again on t. Likewise, rm(rl(P )) is again on t.

8.4 Mini-Project: The Upper Half-Plane Model

In this project we see yet a third model for hyperbolic geometry
A significant new development in this section is the idea of model
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isomorphism. It would be a good idea to review this idea before you
start this project.

8.4.1 There are two cases. If c = 0, then f(z) = a′z + b

where a′ = a
d
and b′ = b

d
. Since f(0) = b′, then b′ is real. Since

f(1) = a′ + b′′ is real then a′ is real. Clearly, we can assume d =
in the fraction defining f . Thus, a,b,c, and d are real.

If c 6= 0, then we can again assume c = 1 by dividing top and
bottom of the fraction by c. Since f(0) = b

d
= r1 is real, then

b = r1d. Also, since f(∞) = a
c
= r2 is real, then a = r2c. Thus,

f(z) = r2cz+r1d
cz+d

. Now, for some real r3 we have f(r3) =
r2cr3+r1d
cr3+d

=
∞. Thus, cr3 + d = 0 or d = −r3c. Then,

f(z) =
r2cz + r1(−r3c)

cz − r3c

=
r2cz − r1r3c

cz − r3c

=
r2z − r1r3

z − r3

Comparing this fraction with the original we see that a,b,c, and
d are real.

8.4.3 If we consider the x-axis as the equivalent of the Poincare
circle, then “lines” should be clines that meet this boundary at righ
angles. That is, lines should be either Euclidean lines that are per-
pendicular to the x-axis, or arcs of circles perpendicular to the axis.
That is, semi-circles with centers along the axis.

8.4.5 You can argue that any configuration of a “line” and
point off the line can be transformed by a suitable upper half-plane
transformation to the scene illustrated in Figure 8.4. Clearly, there
are an infinite number of semi-circles through z0 that do not intersect
the y-axis.

8.6 Hyperbolic Calculation

In this section we do some basic calculus of hyperbolic geometry
Klein’s transformational view really shines here. We see how to de-
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velop some exceptionally nice formulas for arclength, the angle of
parallelism, and area using proofs based on simple configurations.
Also, the hyperbolic Pythagorean Theorem is a nice result in this
section. The fact that hyperbolic geometry is “locally Euclidean”
can be demonstrated nicely with the hyperbolic Pythagorean The-
orem. If we compute the Taylor expansion for cosh we see that
cosh(c) = cosh(a) cosh(b) has as its second-order approximation the
Euclidean Pythagorean Theorem.

8.6.1 Use the definition of cosh and sinh.
8.6.3 This is a simple matter of checking the algebra.
8.6.5 Since the map S preserves the two distance functions in

the models, then the lengths of the curves must be the same.
Next,

|z′| =

∣

∣

∣

∣

(w + i)− (w − i)

(w + i)2

∣

∣

∣

∣

|w′|

=
2

|w + i|2 |w
′|

Thus, using the change of variable formula for integration, w
get

∫ b

a

2|z′(t)|
1− |z|2dt

=

∫ b

a

4|w′(t)|
|w+i|2

1− |w−i|2|w+i|2
dt

=

∫ b

a

4|w′(t)|
|w + i|2 − |w − i|2dt

=

∫ b

a

4|w′(t)|
(w + i)(w − i)− (w − i)(w + i)

dt

=

∫ b

a

4|w′(t)|
2(−iw + iw)

dt

=

∫ b

a

|w′(t)|
v(t)

dt
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8.7 Project 12 - Infinite Real Estate?

You will probably not believe the results of this project, which makes
it such a great lab!

8.7.1 We note that

S(w) = i
w − i

w + i

= i
(u+ i(v − 1))

(u+ i(v + 1))

= i
(u+ i(v − 1))(u− i(v + 1))

u2 + (v + 1)2

= i
(u2 + (v2 − 1)) + i(−2u)

u2 + (v + 1)2

Thus,

x =
2u

u2 + (v + 1)2

y =
u2 + (v2 − 1)

u2 + (v + 1)2

8.7.3 The angle θ will be defined by the tangent
←→
PB to the circle

at P . If θ is 90 degrees, then this tangent is perpendicular to the
y-axis and it is obvious that the angle in the Ω triangle at P is
right angle.

Otherwise, we can assume the tangent intersects the x-axis at
B. It follows that ∆OPB is a right triangle with right angle at P
Drop a perpendicular from P to the x-axis, intersecting at A. Then,
∠APB has measure θ. It immediately follows that the interior angle
of the doubly limiting triangle at P has measure θ.

Lab Conclusion For the conclusion of the lab, note that a tri-
angular area in hyperbolic geometry has area bounded by π by The-
orem 8.28. A 4-sided figure can be split into two triangular figures,
and so its area must be bounded by 2π. A five-sided figure would
have area bounded by 3π, etc.
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Chapter 9

Fractal Geometry

Much of the material in this chapter is at an advanced level, espe-
cially the sections on contraction mappings and fractal dimension—
Sections 9.5 and 9.6. But this abstraction can be made quite con-
crete by the computer explorations developed in the chapter. In
fact, the computer projects are the only way to really understand
these geometric objects on an intuitive level.

Solutions to Exercises in Chapter 9

9.3 Similarity Dimension

The notion of dimension of a fractal is very hard to make precise.
In this section we present one simple way to define dimension, but
there are also other ways to define dimension as well, each useful for
a particular purpose and all agreeing with integer dimension, but
not necessarily with each other.

9.3.1 Theorem 2.27 guarantees that the sides of the new triangles
are parallel to the original sides. Then, we can use SAS congruence
to achieve the result.

9.3.3 At each successive stage of the construction, 8 new squares
are created, each of area 1

9 the area of the squares at the previous

63
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stage. Thus, the pattern for the total area of each successive stage
of the construction is

l = 1− 1

9
− 8

81
− 64

93
− . . .

= 1− 1

9

∞
∑

k=0

(

8

9

)k

= 1− 1

9

1

1− 8
9

= 1− 1

= 0

Thus, the area of the final figure is 0.

9.3.5 The similarity dimension would be log(4)
log(3) .

9.3.7 Split a cube into 27 sub-cubes, as in the Menger sponge
construction, and then remove all cubes except the eight corner
cubes and the central cube. Do this recursively. The resulting fractal
will have similarity dimension log(9)

log(3) , which is exactly 2.

9.4 Project 13 - An Endlessly Beautiful Snowflake

If you want a challenge, you could think of other templates based
on a simple segment, generalizing the Koch template and the Hat
template from exercise 9.4.4.

9.4.1 At stage 0 the Koch curve has length 1. At stage 1 it has
length 4

3 . At stage 2 it has length 16
9 = 42

32
, since each segment is

replaced by the template, which is 4
3 as long as the original segment.

Thus, at stage n the length will be 4n

3n , and so the length will go to
infinity.

9.4.3 The similarity dimension will be that of the template re-
placement fractal. The similarity ratio is 1

3 and it takes 4 sub-objects

to create the template. Thus, the similarity dimension is log(4)
log(3) .
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9.6 Fractal Dimension

Sections 9.5 and 9.6 are quite “thick” mathematically. To get some
sense of the Hausdorff metric, you can compute it for some simple
pairs of compact sets. For example, two triangles in different po-
sitions. Ample practice with examples will help you get a feel for
the mini-max approach to the metric and this will also help you b
successful with the homework exercises.

9.6.1 A function f is continuous if for each ǫ > 0 we can find
δ > 0 such that |f(x)− f(y)| < ǫ when 0 < |x− y| < δ. Let S be
contraction mapping with contraction factor 0 ≤ c < 1. Then, given
ǫ, let δ = ǫ (if c = 0) and δ = ǫ

c
(if c > 0).

If c = 0 we have 0 = |S(x)− S(y)| ≤ |x− y| < δ = ǫ.

If c > 0, we have |S(x)− S(y)| ≤ c|x− y| < c ǫ
c
= ǫ.

9.6.3 Property (2): Since dH(A,A) = d(A,A), and since d(A,A)
max{d(x,A)|x ∈ A}, then we need to show d(x,A) = 0. But,
d(x,A) = min{d(x, y)|y ∈ A}, and this minimum clearly occurs
when x = y; that is, when the distance is 0.

Property (3): If A 6= B then we can always find a point x in
A that is not in B. Then, d(x,B) = min{d(x, y)|y ∈ B} must b
greater than 0. This implies that d(A,B) = max{d(x,B)|x ∈ A} is
also greater than 0.

9.6.5 We know that

d(A,C ∪D) = max{d(x,C ∪D)|x ∈ A}
= max{min{d(x, y)|x ∈ A and y ∈ C or D}}
= max{min{min{d(x, y)|x ∈ Ay ∈ C},min{d(x, y
= max{min{d(x,C), d(x,D)}|x ∈ A}

The last expression is clearly less than or equal to max{d(x,C)|x
A} = d(A,C) and also less than or equal to max{d(x,D)|x ∈ A} =
d(A,D).

9.6.7 There are three contraction mappings which are used to
construct Sierpinski’s triangle. Each of them has contraction scale
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factor of 1
2 . Thus, we want (12)

D + (12)
D + (12)

D = 1, or 3(12)
D = 1,

Solving for D we get D = log(3)
log(2) .

9.7 Project 14 - IFS Ferns

Do not worry too about getting exactly the same numbers for the
scaling factor and the rotations that define the fern. The importan
idea is that you get the right types of transformations (in the correct
order of evaluation) needed to build the fern image. For exercise
9.7.5, it may be hopeful to copy out one piece of the image and then
rotate and move it so it covers the other pieces, thus generating the
transformations needed.

9.7.1 The rotation matrix R is given by
[

cos( 5π
180) sin( 5π

180)
− sin( 5π

180) cos( 5π
180)

]

≈
[

0.996 0.087
−0.087 0.996

]

The scaling matrix S is given by
[

0.8 0
0 0.8

]

If we let T be the translation in the vertical direction by h, then
T1 = T ◦ S ◦ R, which after rounding to the nearest tenth, matches
the claimed affine transformation in the text.

9.7.3 The rotation matrix R is given by
[

cos(−60π180 ) − sin(−60π180 )
sin(−60π180 ) cos(−60π180 )

]

≈
[

0.5 0.866
−0.866 0.5

]

The scaling matrix S is given by
[

0.3 0
0 0.3

]

The reflection matrix r is given by
[

−1 0
0 1

]
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If we let T be the translation in the vertical direction by h
2 , then

T3 = T ◦ S ◦ R ◦ r, which after rounding to the nearest hundredth,
matches the claimed affine transformation in the text.

9.7.5 For the lower left portion of the shape, we need to scale
the whole figure down by a little less than 0.5, say by 0.48. Also,
we need to rotate the figure by 90 degrees and then translate it
back by 0.5 in the x-direction to put it in place. Let T1 be the
net transformation accomplishing this. Then T1(x, y) = (−0.48y +
0.5, 0.48x). Let T2 be the transformation for the upper left portion.
Then T2(x, y) = (0.5x, 0.5y+0.5). Let T3 be the transformation for
the upper right portion. Then T3(x, y) = (0.48y+0.5,−0.48x+1.0).
Finally. let T4 be the transformation for the small inner part. Then
T4(x, y) = (0.3x+ 0.3, 0.3y + 0.3) would work.

9.9 Grammars and Productions

This section will be very different from anything you have done be-
fore, except for those who have had some computer science courses.
The connection between re-writing and axiomatic systems is a deep
one. One could view a theorem as essentially a re-writing of various
symbols and terms used to initialize a set of axioms. Also, turtle
geometry is a very concrete way to view re-writing and so we hav
a nice concrete realization of an abstract idea.

9.9.1 Repeated use of production rule 1 will result in an ex-
pression of the form anSbn. Then, using production rule 2, we get
anbn.

9.9.3 The level 1 rewrite is +RF −LFL−FR+. This is shown
in Fig. 9.1. The level 2 rewrite is +−LF +RFR+FL−F −+RF −
LFL− FR+ F +RF − LFL− FR+−F − LF +RFR+ FL−+.
This is shown in Fig. 9.2. For the last part of the exercise, note that
all interior “lattice” points (defined by the length of one segment)
are actually visited by the curve. Thus, as the level increases (and
we scale the curve back to some standard size) the interior points
will cover space, just as the example in section 9.9 did.
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Figure 9.1:

Figure 9.2:

9.10 Project 15 - Words Into Plants

Grammars as representations of growth is an idea that can be tied in
nicely with the notion of genetics from biology. A grammar is like
blueprint governing the evolution of the form of an object such as
bush, in much the same way that DNA in its expression as proteins
governs the biological functioning of an organism.

9.10.1 The start symbol was rewritten twice.

9.10.3 Here’s one simple example, plus the image generated from
rewriting to a level of 3 (Fig. 9.3).

Productions: X− > F [+X][+ +X][−X][−−X]X (Use a small
turn angle)
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Figure 9.3:
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Appendix A

Sample Lab Report

Pollie Gonn
MCS 303 Project 0
September 12, 2003
The Amazing Pythagorean Theorem

Introduction

The Pythagorean Theorem is perhaps the most famous theorem
in geometry, if not in all of mathematics. In this lab, we look at
one method of proving the Pythagorean Theorem by constructing
a special square. Part I of this report describes the construction
used in the proof and Part II gives a detailed explanation of wh
this construction works, that is why the construction generates
proof of the Pythagorean theorem. Finally, we conclude with some
comments on the many proofs of the Pythagorean Theorem.

Part I:

To start out our investigation of the Pythagorean Theorem, w
assume that we have a right triangle with legs b and a and hy-
potenuse c. Our first task construction is that of a segment sub-
divided into two parts of lengths a and b. Since a and b are ar-
bitrary, we just create a segment, attach a point, hide the original
segment, and draw two new segments as shown.

71
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A CB
a b

Figure A.1:

Then, we construct a square on side a and a square on side b.
The purpose of doing this is to create two regions whose total area
is a2 + b2. Clever huh? Constructing the squares involved several
rotations, but was otherwise straightforward.

A CB
a b

D E

F G

Figure A.2:

The next construction was a bit tricky. We define a translation
from B to A and translate point C to get point H. Then, we connect
H to D and H to G, resulting in two right triangles. In part II, w
will prove that both of these right triangles are congruent to the
original right triangle.
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A CB
a b

D
E

F G

H

Figure A.3:

Next, we hide segment BC and create segments BH and HC.
This is so that we have well-defined triangle sides for the next step
- rotating right triangle ADH 90 degrees about its top vertex, and
right triangle HGC -90 degrees about its top vertex.

A CB
a

D
E

F G

H

Figure A.4:

Part II:

We will now prove that this construction yields a square (on DH)
of side length c, and thus, since the area of this square is clearly
equal to the sum of the areas of the original two squares, we hav
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a2 + b2 = c2, and our proof would be complete. By SAS, triangle
HCB must be congruent to the original right triangle, and thus its
hypotenuse must be c. Also, by SAS, triangle DAH is also congruen
to the original triangle, and so its hypotenuse is also c. Then, angles
AHD and CHG(= ADH) must sum to 90 degrees, and the angle
DHG is a right angle. Thus, we have shown that the construction
yields a square on DH of side length c, and our proof is complete.

Conclusion:

This was a very elegant proof of the Pythagorean Theorem. In
researching the topic of proofs of the Pythagorean Theorem, we dis-
covered that over 300 proofs of this theorem have been discovered.
Elisha Scott Loomis, a mathematics teacher from Ohio, compiled
many of these proofs into a book titled The Pythagorean Proposi-

tion, published in 1928. This tidbit of historical lore was gleaned
from the Ask Dr. Math website
(http://mathforum.org/library/drmath/view/62539.html). It seems
that people cannot get enough of proofs of the Pythagorean Theo-
rem.
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Appendix B

Sample Lab Grading

Sheets

Sample Grade Sheet for Project 1 - The Ratio Made of

Gold

• 10 points - Organization And Writing Mechanics

– 5 Structure of report is clear, with logical and appropriate
headings and captions, including an introduction and
conclusion.

– 5 Spelling and Grammar

• 50 points - Discussion of Project Work and Solutions to Exer-
cises

– 5 Discussion of the Construction of the Golden Ratio

– 5 Discussion of the Construction of the Golden Rectangle

– 10 Solution to Exercise 1.3.1

– 10 Solution to Exercise 1.3.2

– 10 Solution to Exercise 1.3.3

75
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– 10 Solution to Exercise 1.3.4

• Total Points for Project (out of 60 possible)
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Sample Grade Sheet for Project 2 - A Concrete Ax-

iomatic System

• 10 points - Organization And Writing Mechanics

– 5 Structure of report is clear, with logical and appropriate
headings and captions, including an introduction and
conclusion.

– 5 Spelling and Grammar

• 50 points - Discussion of Project Work and Solutions to Exer-
cises

– 10 Discussion of Euclid’s Five Postulates

– 10 Construction of Rectangles

– 10 Sum of Angles in a Triangle

– 10 Euclid’s Equilateral Triangle Construction

– 10 Perpendicular to a Line through a Point Not on the
Line

• Total Points for Project (out of 60 possible)
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Sample Grade Sheet for Project 3 - Special Points of

Triangle

• 10 points - Organization And Writing Mechanics

– 5 Structure of report is clear, with logical and appropriate
headings and captions, including an introduction and
conclusion.

– 5 Spelling and Grammar

• 60 points - Discussion of Project Work and Solutions to Exer-
cises

– 10 Discussion of Work Done in Lab

– 10 Exercise 2.3.1

– 10 Exercise 2.3.2

– 10 Exercise 2.3.3

– 10 Exercise 2.3.4

– 10 Exercise 2.3.5

• Total Points for Project (out of 70 possible)



i

i

“book” — 2011/8/23 — 19:41 — page 79 — #85

79

Sample Grade Sheet for Project 4 - Circle Inversion and

Orthogonality

• 10 points - Organization And Writing Mechanics

– 5 Structure of report is clear, with logical and appropriate
headings and captions, including an introduction and
conclusion.

– 5 Spelling and Grammar

• 50 points - Discussion of Project Work and Solutions to Exer-
cises

– 10 Discussion of Work Done in Lab

– 10 Exercise 2.7.1

– 10 Exercise 2.7.2

– 10 Exercise 2.7.3

– 10 Exercise 2.7.4

• Total Points for Project (out of 60 possible)
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Sample Grade Sheet for Project 7 - Quilts and Trans-

formations

• 10 points - Organization And Writing Mechanics

– 5 Structure of report is clear, with logical and appropriate
headings and captions, including an introduction and
conclusion.

– 5 Spelling and Grammar

• 50 points - Discussion of Project Work and Solutions to Exer-
cises

– 10 Discussion of Initial Work Done on Quilt 1

– 10 Exercise 4.5.1

– 10 Exercise 4.5.2

– 10 Exercise 4.5.3

– 10 Exercise 4.5.4

• Total Points for Project (out of 60 possible)
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Sample Grade Sheet for Project 8 - Constructing Com-

positions

• 10 points - Organization And Writing Mechanics

– 5 Structure of report is clear, with logical and appropriate
headings and captions, including an introduction and
conclusion.

– 5 Spelling and Grammar

• 50 points - Discussion of Project Work and Solutions to Exer-
cises

– 10 Discussion of Initial Work Done

– 10 Exercise 4.8.1

– 10 Exercise 4.8.2

– 10 Exercise 4.8.3

– 10 Exercise 4.8.4

• Total Points for Project (out of 60 possible)
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Sample Grade Sheet for Project 9 - Constructing Tesse-

lations

• 10 points - Organization And Writing Mechanics

– 5 Structure of report is clear, with logical and appropriate
headings and captions, including an introduction and
conclusion.

– 5 Spelling and Grammar

• 30 points - Discussion of Project Work and Solutions to Exer-
cises

– 10 Discussion of Initial Work Done

– 10 Exercise 5.5.1

– 10 Exercise 5.5.2

• Total Points for Project (out of 40 possible)
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Sample Grade Sheet for Project 10 - The Saccheri Quadri-

lateral

• 10 points - Organization And Writing Mechanics

– 5 Structure of report is clear, with logical and appropriate
headings and captions, including an introduction and
conclusion.

– 5 Spelling and Grammar

• 60 points - Discussion of Project Work and Solutions to Exer-
cises

– 10 Discussion of Initial Work Done

– 10 Exercise 6.5.1

– 8 Exercise 6.5.2 part i

– 8 Exercise 6.5.2 part ii

– 8 Exercise 6.5.2 part iii

– 8 Exercise 6.5.2 part iv

– 8 Exercise 6.5.2 part v

• Total Points for Project (out of 70 possible)
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