
C H A P T E R 16

Complex Analytic
Functions

The shortest route between two truths in the real domain
passes through the complex domain.
– Jacques Hadamard (1865-1963)

16.1 THE COMPLEX PLANE
Complex numbers are numbers of the form

α = a+ ib

where a and b are real. The set of all possible numbers of this form
will be called the set of complex numbers and the plane containing these
numbers will be called the complex plane.

A complex number has an interesting dual nature. It can be thought
of geometrically as a vector (i.e., an ordered pair of numbers), or it can
be thought of algebraically as a single (complex) number having real
components.

Definition 16.1. If z = x+iy is a complex number, then x is called
the real part of z, denoted Re(z), and y is called the imaginary part,
denoted Im(z).

Given a complex number z = x + iy, or two complex numbers z1 =
x1 +iy1 and z2 = x2 +iy2, we define basic algebraic operations as follows:

Addition-Subtraction z1 ± z2 = (x1 ± x2) + i(y1 ± y2)
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Multiplication by Real Scalar kz = kx+ iky, for k a real number

Multiplication z1z2 = (x1x2 − y1y2) + i(x1y2 + x2y1)

Complex Conjugate z = x− iy

Modulus |z| =
√
zz =

√
x2 + y2

Note that complex addition (subtraction) is defined so that this op-
eration satisfies the definition of vector addition (subtraction).

The modulus of z is the same as the norm (length) of the vector that
z represents. The conjugate of z yields a number that is the reflection of
z (considered as a vector) across the x-axis.

16.1.1 Polar Form

The x and y coordinates of a complex number z can be written as

x = r cos(θ), y = r sin(θ)

where r is the length of v = (x, y) and θ is the angle that v makes with
the x-axis. Since r = |z|, then

z = x+ iy = |z|(cos(θ) + i sin(θ))

The term (cos(θ) + i sin(θ)) can be written in a simpler form using
the following definition.

Definition 16.2. The complex exponential function ez is defined
as

ez = ex+iy = ex(cos(y) + i sin(y))

From this definition we can derive Euler’s Formula:

eiθ = cos(θ) + i sin(θ)

Thus, the polar form for a complex number z can be written as

z = |z|eiθ

All of the usual power properties of the real exponential hold for ez,
for example, ez1+z2 = ez1ez2 . Thus,

eiθeiφ = ei(θ+φ)
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We also note that if z = |z|eiθ, then

z = |z|e−iθ

The angle coordinate for z will be identified as follows:

Definition 16.3. Given z = |z|eiθ, the argument or arg of z is a
value between 0 and 2π defined by

arg(z) = θ (mod 2π)

We use here the modular arithmetic definition that a mod n repre-
sents the remainder (in [0, n)) left when a is divided by n. For example,
24 mod 10 is 4.

From the definition of arg, and using the properties of the complex
exponential, we see that if z and w are complex numbers, then

arg(zw) = (arg(z) + arg(w))(mod 2π)

The proof is left as an exercise. Also, if z = |z|eiθ and w = |w|eiφ,
then wz = |w||z|ei(φ+θ).

16.1.2 Complex Functions

A complex function f in a region R of the plane is a rule that assigns to
every z ∈ R a complex number w. The relationship between z and w is
designated by w = f(z). In the last section, f(z) = ez defined a complex
function on the entire complex plane.

Every complex function is comprised of two real-valued functions.
By taking the real and imaginary parts of w = f(z), we get that

f(x+ iy) = u(x, y) + iv(x, y)

For example, if f(z) = z2, then u(x, y) = x2 − y2 and v(x, y) = 2xy.
One of the simplest classes of complex functions is the set of poly-

nomials with complex coefficients. One of the most significant results in
the area of complex numbers is that every complex polynomial has at
least one root, and therefore has a complete set of roots (see [17] for a
proof).
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Theorem 16.1. (Fundamental Theorem of Algebra) Let p(z) be a
non-constant polynomial. Then, there is a complex number a with
p(a) = 0.

The Point at Infinity and The Extended Complex Plane

The set of points for which the function w = 1
z is defined will include all

complex numbers, except z = 0. As z approaches 0, the modulus of w
will increase without bound.

Also, for all w 6= 0 there is a point z for which w = 1
z . Thus, f(z) = 1

z

defines a one-to-one function from the complex plane (minus z = 0) to
the complex plane (minus w = 0).

We call a function f that maps a set S to a set S′ one-to-one (1-1)
if it has the property that whenever f(s) = f(t), then s = t, for s and
t in S. We will call fonto if for all elements s′ in S′, there is an s in S
such that f(s) = s′.

In order to make f a function defined on all points of the complex
plane, we extend the complex plane by adding a new element, the point
at infinity, denoted by ∞. To be more precise, we define the point at
infinity as follows:

Definition 16.4. The point at infinity is the limit point of every
sequence {zn} of complex numbers that is increasing without bound.
A sequence is increasing without bound if for all L > 0 we can find
N such that |zn| > L for all n > N .

What properties does the point at infinity have? If {zn} increases
without bound, then { 1

zn
} must converge to zero. So, if∞ = limn→∞ zn,

then 0 = limn→∞
1
zn
.

Thus, it makes sense to define 1
∞ = 0 and 1

0 = ∞. Then, f(z) = 1
z

will be a one-to-one map of the extended complex plane (the complex
plane plus the point at infinity) onto itself.

Whereas we can conceptualize the set of complex numbers as the
Euclidean (x, y) plane, the extended complex plane, with an ideal point
at infinity attached, is harder to conceptualize. It turns out that the
extended complex plane can be identified with a sphere through a process
called stereographic projection.
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Stereographic Projection

In a three-dimensional Euclidean space with coordinates (X, Y, Z), let S
be the unit sphere, as shown in Figure 16.1.

Let N be the north pole of the sphere, the point at (0, 0, 1). The
sphere is cut into two equal hemispheres by the X-Y plane, which we
will identify with the complex plane. Given a point P = z = (x+ iy) in
the complex plane, we map P onto the sphere by joining N to P by a
line and finding the intersection point P ′ of this line with the sphere.

O

N(0,0,1)

P(x,y,0)

P’(X,Y,Z)

Figure 16.1

Clearly, points for which |z| < 1 will map to the lower hemisphere
and points for which |z| > 1 will map to the upper hemisphere. Also, all
points in the complex plane will map to a point of the sphere, covering
the sphere entirely, except for N . If we identify the point at infinity with
N , we get a one-to-one correspondence between the extended complex
plane and the sphere S. The coordinate equations for this map are

X = 2x
|z|2 + 1 , Y = 2y

|z|2 + 1 , Z = |z|
2 − 1

|z|2 + 1 (16.1)

The derivation of these coordinate equations is left as an exercise.
These equations define a map from the extended complex plane to the
sphere.

Alternatively, we can consider the function π given by π(P ′) = P
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that maps points on the sphere to points in the complex plane. This
map is called the stereographic projection of S onto the complex plane.

An important property of stereographic projection is that it maps
circles or lines to circles or lines.

Theorem 16.2. Let c be a circle or line on the unit sphere. Then,
the image of c under π is again a circle or line.

Proof: We note that c is the intersection of some plane with the
sphere. Planes have the general equation AX + BY + CZ = D, where
A, B, C, and D are constants. Then, using equation 16.1 we have

A
2x

|z|2 + 1 +B
2y

|z|2 + 1 + C
|z|2 − 1
|z|2 + 1 = D

Simplifying, we get

2Ax+ 2By + C(x2 + y2 − 1) = D(x2 + y2 + 1)

or
(C −D)x2 + (C −D)y2 + 2Ax+ 2By = C +D

If C − D = 0 we get the equation of a line. Otherwise, this is the
equation of a circle. 2

Stereographic projection also has the property that it preserves an-
gles. This is true of any map of the extended complex plane that takes
circles and lines to circles and lines (see [4, page 90] or [14, pages 248–
254]).

16.1.3 Analytic Functions and Conformal Maps

Two very important properties of a complex function f are its differen-
tiability and its geometric effect on regions in the plane.

Definition 16.5. A complex function f(z) is differentiable at z0 if

lim
z→z0

f(z)− f(z0)
z − z0

exists. The value of the limit will be denoted as f ′(z0).
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The complex derivative of a function satisfies the same rules as for
a real derivative: the power rule, product and quotient rules, and the
chain rule. However, the fact that the limit defining the derivative is
complex yields some interesting differences that one would not expect
from comparison with real functions.

For example, the function f(z) = z (complex conjugation) is not
differentiable. To see this, let z = z0 + h. Then

lim
z→z0

f(z)− f(z0)
z − z0

= lim
h→0

f(z + h)− f(z)
h

= lim
h→0

z + h− z
h

= lim
h→0

h

h

If h is real, this limit is 1 and if h is pure imaginary, this limit is −1.
Thus, the complex conjugate function is not differentiable.

The functions of most interest to us are those differentiable not only
at a point, but in a region about a point.

Definition 16.6. A function f(z) is analytic at a point z0 if it
is differentiable at z0 and at all points in some small open disk
centered at z0.

An amazing difference between complex variables and real variables
is the fact that an analytic function is not just one-times differentiable,
but is in fact infinitely differentiable and has a power series expansion
about any point in its domain. The proof of these results would take us
far afield of our main focus of study. For a complete derivation of these
results on analytic functions, see [17] or [15].

Analytic functions have the geometric property that angles and
lengths will conform or be in harmony as they are transformed by the
action of the function.
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Definition 16.7. Let f(z) be a function defined on an open subset
D of the complex plane. Then, we say that

• f preserves angles if given two differentiable curves c1 and
c2 intersecting at z0 with an angle of θ between their tangents
(measured from c1 to c2), the composite curves f ◦c1 and f ◦c2
have well-defined tangents that intersect at the same angle θ
(measured from f ◦ c1 to f ◦ c2).

• f preserves local scale if for z near z0, we have |f(z)−f(z0)| ≈
k|z − z0|, with k a positive real constant, and

lim
z→z0

|f(z)− f(z0)|
|z − z0|

= k

Definition 16.8. A continuous function f(z) defined on an open
set D is said to be conformal at a point z0 in D if f preserves angles
and preserves local scale.

It turns out that an analytic function is conformal wherever its
derivative is non-zero.

Theorem 16.3. If a function f(z) is analytic at z0, and if f ′(z0) 6=
0, then f is conformal at z0.

Proof: Let z(t) = c(t) be a curve with c(0) = z0. The tangent vector
to this curve at t = 0 is c′(0), and we can assume this tangent vector
is non-zero. (To check conformality, we need to have well-defined an-
gles.) Also, arg(c′(0)) measures the angle this tangent makes with the
horizontal.

The image of c under f is given by w(t) = f(c(t)), and the tangent
vector to this curve at t = 0 will be dw

dt at t = 0. Since

dw

dt
= f ′(c(t))c′(t)

the tangent to w(t) at t = 0 is w′(0) = f ′(c(0))c′(0) = f ′(z0)c′(0). Thus,
w′(0) 6= 0 and arg(w′(0)) = arg(f ′(z0)) + arg(c′(0)). We see that the
change in angle between the original tangent to c and the tangent to
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the image curve w is always arg(f ′(z0)). Thus, any two curves meeting
at a point will be mapped to a new pair of intersecting curves in such
a way that their tangents will both be changed by this constant angle,
and thus the angle between the original tangents will be preserved.

For showing preservation of scale, we note that

|f ′(z0)| = lim
z→z0

|f(z)− f(z0)|
|z − z0|

Thus, for z0 close to z, |f(z)−f(z0)| ≈ |f ′(z0)||z−z0| and f preserves
local scale. 2

We note here that if f is analytic, then it preserves not only the size
of angles, but also their orientation, since the angle between two curves
is modified by adding arg(f ′(z0)) to both tangents to get the new angle
between the images of these curves.

The converse to Theorem 16.3 also holds.

Theorem 16.4. If a function f(z) is conformal in a region D, then
f is analytic at z0 ∈ D, and f ′(z0) 6= 0.

For a proof of this theorem see [1].
The next theorem tells us the nature of a conformal map defined on

the complex plane (or the extended complex plane).

Theorem 16.5. A conformal map f that is one-to-one and onto
the complex plane must be of the form f(z) = az + b, where a 6= 0
and b are complex constants.

Proof: By the previous theorem we know that f is analytic and thus
must have a Taylor series expansion about z = 0, f(z) =

∑∞
k=0 akz

k.
If the series has only a finite number of terms, then f is a polynomial
of some degree n. Then, f ′ is a polynomial of degree n − 1, and if it is
non-constant, then by the Fundamental Theorem of Algebra, f ′ must
have a zero. But, f ′ 6= 0 anywhere, and thus f(z) = az + b, a 6= 0.

Suppose the series for f has an infinite number of terms. Then there
are points α in the plane for which f(z) = α has an infinite number of
solutions, which contradicts f being one-to-one. (The point α exists by
the Casorati-Weierstrass Theorem and the fact that f(1

z ) has an essential
singularity at z = 0 (see [3, page 105] for more details)). 2
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Theorem 16.6. A conformal map f that is one-to-one and onto
the extended complex plane must be of the form f(z) = az+b

cz+d , where
ad− bc 6= 0.

Proof: If the point at infinity gets mapped back to itself by f , then
f is a conformal map that is one-to-one and onto the regular complex
plane; thus f(z) = az + b, a 6= 0 by the previous theorem. Then f(z) =
az+b
0z+d , where d = 1 and ad− bc = a 6= 0.

Otherwise, suppose that z = α is the point that gets mapped to
infinity. Let ζ = 1

z−α . Consider w = f(ζ). At z = α the value of ζ
becomes infinite. Thus, for w = f(ζ), the point at infinity gets mapped
to itself, and so w = f(ζ) = aζ + b, a 6= 0. Then

w = a

( 1
z − α

)
+ b = a+ b(z − α)

z − α
= bz − (a+ bα)

z − α

Since −bα− (−(a+ bα)(1)) = a 6= 0, we have proved the result.
2

Definition 16.9. Functions f of the form f(z) = az+b
cz+d are called

bilinear transformations, or linear fractional transformations. If
ad− bc 6= 0, then f is called a Möbius transformation.

We note here that an equivalent definition of Möbius transformations
would be the set of f(z) = az+b

cz+d with ad − bc = 1. (The proof is left as
an exercise.)

Exercise 16.1.1. Derive Equation 16.1. [Hint: If N , P ′, and P are on a
line, then P ′−N and P −N are parallel. Use this to show that (X,Y, Z−1) =
t(x, y,−1). Solve this for X, Y , Z and use the fact that X2 + Y 2 +Z2 = 1 to
find t.]

Exercise 16.1.2. Show that stereographic projection (the map π described
above) has the equation π(P ′) = 1

1−Z (X,Y ). [Hint: The line through N , P ′,
and P in Figure 16.1 will have the form N + t(P ′ −N). The third coordinate
of points on this line will be given by 1 + t(Z − 1). Use this to find t.]

Exercise 16.1.3. Show that stereographic projection is a one-to-one
map. [Hint: Start with two points (X,Y, Z) and (X ′, Y ′, Z ′) and suppose
π(X,Y, Z) = π(X ′, Y ′, Z ′). Use the previous exercise and Equation 16.1 to
show (X,Y, Z) = (X ′, Y ′, Z ′).]
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Exercise 16.1.4. Show that stereographic projection is onto the complex
plane.

Exercise 16.1.5. Show that the set of Möbius transformations can be defined
as the set of f(z) = az+b

cz+d with ad− bc = 1.

Exercise 16.1.6. Let f(z) = z. Show that f has the local scale preserving
property, but has the angle-preserving property only up to a switch in the sign
of the angle between tangent vectors. Such a map is called indirectly conformal.




