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Foundations of Elliptic
Geometry

It is well known that geometry presupposes not only the con-
cept of space but also the first fundamental notions for con-
structions in space as given in advance. It only gives nominal
definitions for them, while the essential means of determining
them appear in the form of axioms. The relationship of these
presumptions is left in the dark; one sees neither whether and
in how far their connection is necessary, nor a priori whether
it is possible.
– Georg Bernhard Riemann (1826–1866) from On the hy-
potheses which lie at the foundation of geometry (1854)

In Chapter 11, we showed that Euclid’s Propositions 1-15, 23, and
half of 26 (ASA) can be put on a solid axiomatic footing. We used the
axioms of betweenness to develop segment and angle ordering, and the
idea of separation of points. We also developed the notion of segment
and angle measure.

As noted in the section on betweenness (section 11.2 in Chapter 11),
the axioms we used to define betweenness do not hold in Elliptic ge-
ometry, due to the fact that lines are bounded and thus are forced to
loop back on themselves. In this chapter we develop an alternative set
of axioms that will serve as a replacement for the betweenness axioms.
We also slightly modify the axioms of incidence. Using these new ax-
ioms, we will show that almost all of the results from Chapter 11, from
sections 11.1 to 11.9, will hold in Elliptic Geometry. The material on
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Circle-Circle Continuity in section 11.10 will also hold, as will the re-
sults on reflections in section 11.11.

14.1 AXIOMS OF INCIDENCE
The incidence axioms from section 11.1 will still be valid for Elliptic
geometry, but one of these axioms will need to be strengthened. Axiom
I-3 stated that “On every line there exist at least two distinct points.”
We will need to strengthen this to requiring that there exists at least
three points on any line. This new condition is necessary for our new
axioms on betweenness. Also, we will add the Elliptic Parallel property
that all lines intersect, as this is really an incidence property. Thus, the
Elliptic Incidence axioms will be:

• E-I-1 Through any two distinct points A and B there is
always a line m.

• E-I-2 Through any two distinct points A and B, there is
not more than one line m.

• E-I-3 On every line there exists at least three distinct
points. There exist at least three points not all on the
same line.

• E-I-4 Through any three points not on the same line, there
is one and only one plane.

• E-1-5 For any pair of distinct lines l and m, there is always
a point P that is on both lines.

We note here that if these axioms are true in a particular model,
then the axioms of section 11.1 will also hold.

14.2 AXIOMS OF SEPARATION (BETWEENNESS)
Consider a “line” that loops back
on itself. In our models of Elliptic
geometry, lines were circles. On
a circle, given three points A, B,
and C it is not clear which point
is “between” the other two.
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However, if we add a fourth
point D, as shown, it is clear now
that C is separated from D by A
and B. C is “between” A and B
relative to point D.

Our new axioms will define this type of separation of points. Our
system will follow that of H.S.M. Coxeter in his book Non-Euclidean
Geometry [6], with some slight modifications. We will use the notation
AB ‖ CD to stand for the idea that A and B separate C and D, or that
C is between A and B relative to point D. As we saw in Chapter 11, we
do not define what separation and betweenness mean, we only stipulate
the properties these terms have.

• E-II-1 If A, B, and C are three collinear points, then there
is at least one point D such that AB ‖ CD.

• E-II-2 If AB ‖ CD then A, B, C, and D are collinear and
distinct.

• E-II-3 If AB ‖ CD then AB ‖ DC and CD ‖ AB.

• E-II-4 If A, B, C, and D are four collinear points, then
either AB ‖ CD or AC ‖ BD or AD ‖ BC.

• E-II-5 If A, B, C, D, and E are collinear points, and if
AB ‖ CD then, either AB ‖ CE or AB ‖ DE.

• E-II-6 If AB ‖ CD and if there is a perspectivity mapping
A, B, C, and D on line l to A′, B′, C ′, and D′ on line l′,
then A′B′ ‖ C ′D′.

The first four axioms seem straight-forward if we keep in mind the
circle figure above. The fifth axiom seems a bit strange. Let’s consider
it in terms of our Elliptic Model.

Here, we have AB ‖ CD and
AB ‖ CE. It is clear that D and
E are not separated from A and
B.
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This figure suggests the following theorem:

Theorem 14.1. Given five distinct collinear points A, B, C, D,
and E, if AB ‖ CD and AD ‖ BE, then AB ‖ CE, BE ‖ CD,
and AD ‖ CE.

Proof: Since AB ‖ CD, then by axiom E-II-5 we have that either AB ‖
DE or AB ‖ CE. By axiom E-II-4 we cannot have both AD ‖ BE and
AB ‖ DE. Thus, AB ‖ CE.

Now, we can assume AB ‖ CE. Then, BA ‖ EC by axiom E-II-3.
Also, by axiom E-II-3 we have BE ‖ DA. Thus, if we let A′ = B, B′ = E,
C ′ = D, D′ = A, and E′ = C, we have A′B′ ‖ C ′D′ and A′D′ ‖ B′E′.
By what we have already proven we must have A′B′ ‖ C ′E′ or BE ‖ DC
(equivalently BE ‖ CD).

For the last part of the proof, we have shown EC ‖ AB and EB ‖
CD. Let A′ = E, B′ = C, C ′ = A, D′ = B, and E′ = D. Then, A′B′ ‖
C ′D′ and A′D′ ‖ B′E′ and again we have A′B′ ‖ C ′E′ or EC ‖ AD
(equivalently AD ‖ CE). 2

This theorem could be called “five-point betweenness.” It serves the
role for elliptic geometry that four-point betweenness served in Chap-
ter 11. This theorem says that, once we know AB ‖ CD and AD ‖ BE,
then all possible separations illustrated by the relative positions of the
five points in Figure 14.1 are true. When we use this result in proofs, we
can refer to this figure for insight on five-point betweenness.

Figure 14.1 Five-Point Betweenness

Axiom E-II-6 deals with perspectivities.
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Definition 14.1. A perspectivity with center O is a 1-1 mapping
of the points of line l to the points of line l′ such that if A on l is
mapped to A′ on l′, then

←→
AA′ passes through O. Also, O is not on

either line (Figure 14.2).

Figure 14.2 Perspectivity

One can think of the point O as a light source and the points on l′ as
the shadows of the projection from points on l. Axiom E-II-6 holds true
in all of our models of Euclidean, Hyperbolic, Elliptic, and Projective
geometries.

We will use the axioms of separation to define segments and (relative)
betweenness.

Definition 14.2. If A, B, and C are three collinear points, then
the segment AB/C is the set of points X such that AB ‖ CX,
together with points A and B.

We can think of a segment AB/C as the set of points on ←→AB that
are separated from C by A and B, together with endpoints A and B.

In our Elliptic Model, this defini-
tion allows us to specify one of the
two possible segments defined by
A and B.

In Euclidean and Hyperbolic geometry, two points determine a
unique segment. In Elliptic geometry the best we can do is the following:
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Theorem 14.2. Given two distinct points A and B there is at least
one segment containing A and B.

Proof: The proof of this theorem is essentially an application of the
Incidence Axioms for Elliptic geometry, along with Axiom E-II-1, and is
left as an exercise. 2

Definition 14.3. X is an interior point of AB/C if X is an el-
ement of AB/C that is not equal to A or B. An interior point Z
is between two interior points X and Y of AB/C if XY ‖ CZ.
We then say that X ∗ Z ∗ Y /C. A point Y is an exterior point of
AB/C if it is not A or B or an interior point.

If we restrict points to only those
interior to a specified segment,
we can refer to “three-point”
betweenness without ambiguity.
Here, interior point Z is between
X and Z. It will be left as an ex-
ercise to show that this “three-
point” betweenness satisfies ax-
ioms II-1 through II-3 of sec-
tion 11.2.

Theorem 14.3. Given a segment AB/C there is at least one inte-
rior point.

Proof: The proof of this theorem is essentially an application of Axiom
E-II-1 and is left as an exercise. 2

In the figures above, which are motivated by our Elliptic Model, it
appears that, given a segment, there is a “complimentary” segment. The
existence of interior points allows us to define complimentary segments
precisely.
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Definition 14.4. Given a segment AB/C, let D be an interior
point. Then, the segment AB/D is called the complimentary seg-
ment and will be denoted by AB

C

We note thatX is an interior point of AB
C

, withD an interior point to
AB/C, if and only if AB ‖ DX. This follows directly from the definition
of segment AB/D. Since AB ‖ DC, it is always the case that C is an
interior point of AB/D, thus also of AB

C
. The next theorem is useful for

telling when two points are interior to a segment.

Theorem 14.4. Let X be an interior point of AB/C. Then, Y on
←→
AB is also an interior point if and only if AX ‖ BY or AY ‖ BX.

Proof: Let X be an interior point of AB/C. Then, AB ‖ CX.
Assume Y is also an interior point of AB/C. Then AB ‖ CY . Sup-

pose AB ‖ XY . This is impossible by Axiom E-II-5, as we cannot have
AB ‖ CX, AB ‖ CY , and AB ‖ XY simultaneously. So, AB ∦ XY . By
axiom E-II-4 either AX ‖ BY or AY ‖ BX.

Conversely, suppose AX ‖ BY or AY ‖ BX. If AX ‖ BY , then since
AB ‖ CX, we have by Theorem 14.1 that AB ‖ CY and Y is interior
to AB/C. The proof of the remaining case of AY ‖ BX is similar. 2

An (almost) immediate corollary to this theorem is the following:

Corollary 14.5. Let X be an interior point of AB/C. Then, Y on
←→
AB is an exterior point if and only if AB ‖ XY .

This result implies that if Y is an exterior point of AB/C, then
AB/C = AB/Y .

The next theorem guarantees that we can split a segment into two
distinct parts.

Theorem 14.6. Let X be an interior point of AB/C. Then AB/C
= AX/C ∪XB/C and X is the only point common to AX/C and
XB/C.
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Proof: We will first show that AB/C ⊂ AX/C ∪XB/C. Clearly, X
is in either AX/C or XB/C. Let Y 6= X be an interior point on AB/C.
By Theorem 14.4 we know that AX ‖ BY or AY ‖ BX. Suppose
AX ‖ BY . Since Y is on AB/C we have that AB ‖ Y C. Then, by five-
point betweenness (Theorem 14.1) we have that AX ‖ CY and thus Y
is on AX/C. A similar argument shows that if AY ‖ BX then Y is on
XB/C.

Now, we will show that AX/C ∪ XB/C ⊂ AB/C. We know that
X is on AB/C, by the hypothesis of the theorem. Let Y be an interior
point of AX/C. Then, AX ‖ CY . Since X is on AB/C we know that
AB ‖ XC. By five-point betweenness, we have AB ‖ CY , and Y is on
AB/C. A similar argument shows that if Y is interior to XB/C, then
Y is on AB/C.

The proof that there is only one point common to AX/C and XB/C
is left as an exercise. 2

The next theorem tells us that the definition of the complimentary
segment AB

C
to a given segment AB/C does not depend on the choice

of interior point D on AB/C. It also implies that lines are “finite” in
the sense that they are composed of two segments. (Note: This does not
mean they have finite length, as we have not defined length yet.)

Theorem 14.7. Given a line ←→AB and a segment AB/C then:

• AB/C ∩ AB
C

= {A,B},

• AB/C ∪ AB
C

=←→AB.

Proof:

• Clearly, by using the definitions of AB/C and AB
C

we have that
{A,B} ⊂ AB/C ∩ AB

C
.

On the other hand let X be an element of AB/C ∩ AB
C

. If X
is A or B then X is clearly in {A,B}. Assume X is not A and
not B. Since X is in AB/C we have that AB ‖ CX. Since X is
in AB

C
, then AB ‖ DX for D an interior point of AB/C. But,

we know that AB ‖ CD. By axiom E-II-5, all three of AB ‖ CX,
AB ‖ DX, and AB ‖ CD cannot hold simultaneously. Thus, there
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is no point common to the interiors of AB/C and AB
C

and so
AB/C ∩ AB

C
⊂ {A,B}.

Thus, AB/C ∩ AB
C

= {A,B}.

• Let X be an element of AB/C ∪AB
C

. If X = A or X = B then, X

is certainly on the line ←→AB. Otherwise, suppose X is on AB
C

with
X not equal to A or B. Then, AB ‖ DX for some interior point
D of AB/C. But, this implies by axiom E-II-2 that A,B,D,X are
collinear. Likewise, if X is on AB/C, then A,B,C,X are collinear.
In either case, we get that X is on ←→AB.
On the other hand let X be an element of ←→AB. By axiom E-II-
4 we have that either AB ‖ CX, or AC ‖ BX, or AX ‖ BC.
If X = A or X = B or AB ‖ CX, then X is on AB/C. If
AC ‖ BX, then since AB ‖ CD, for D interior to AB/C, we have
by Theorem 14.1 that AB ‖ DX. Thus, X is on AB

C
. If AX ‖ BC,

then since AB ‖ CD, we can use axiom E-II-3 to rewrite these two
separations as BA ‖ CD and BC ‖ AX. Again, by Theorem 14.1,
we have BA ‖ DX and X is on AB

C
.

We have shown that AB/C ∪AB
C
⊂
←→
AB and ←→AB ⊂ AB/C ∪AB

C
.

Thus, AB/C ∪ AB
C

=←→AB.

2
Given two points A and B, we then have two possible segments that

are defined by these points. When we speak of a “choice” for segment
AB we will be referring to a selection of one of the two possible segments
defined by A and B. With this understanding, Pasch’s axiom for Elliptic
geometry becomes a theorem:

Theorem 14.8. (Pasch’s Axiom) Let A, B, and C be three non-
collinear points and let m be a line that does not contain any of
these points. If m contains a point of segment AB/E, for some E
on ←→AB then, for a given choice of AC, there is a unique choice of
BC such that m contains a point of either AC or BC.

Proof: The proof is left as an exercise. 2
This theorem has a conclusion that seems rather wishy-washy. This is
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due to the fact that our Euclidean notion of betweenness does not apply,
so we cannot specify which segments on a line will be intersected. The
next theorem is more satisfying in this respect. It says that whenever a
pair of lines intersect a choice of a side on a triangle, and do not intersect
another side, then both lines intersect the same choice of the third side.

Theorem 14.9. Let A, B, and C be three non-collinear points and
let m, n be lines that do not contain any of these points. For a choice
of AC, suppose that m and n do not intersect AC. Let AB/E be
a choice of segment AB and AB

E
be the complimentary segment.

Then,

• If m and n intersect AB/E, then there is a unique choice of
BC, say BC/F , such that m and n both intersect BC/F .

• If m intersects AB/E and n intersects AB
E

then there is
a unique choice of BC, say BC/F , such that m intersects
BC/F and n intersects BC

F
.

Proof: Let m and n intersect AB/E at X and Y . Then, X and Y are
internal to AB/E, and by Theorem 14.4, we have that AX ‖ BY or AY ‖
BX. Now, m intersects some choice of BC by the previous theorem.
Without loss of generality, we assume it intersects BC/F at X ′. Also, n
intersects some choice of BC at a point Y ′.

By Axiom E-1-5, m and ←→AC intersect at some point O∗, and since
O∗ is not any of the points A, B, or C, and since m cannot coincide
with either ←→AB or ←→BC, we get that O∗ is not on ←→AB or ←→BC. Thus, we
get a perspectivity from O∗ mapping ←→AB to ←→BC. We also note that the
hypotheses of the theorem imply that O∗ is external to the given choice
of AC. Let Y ∗ be the intersection of ←−→Y O∗ with ←→BC.

By axiom E-II-6 we know that perspectivities preserve separation.
Thus, since AX ‖ BY or AY ‖ BX, we have that CX ′ ‖ BY ∗ or
CY ∗ ‖ BX ′. Since X ′ is internal to BC/F , we have that Y ∗ is also
internal, by Theorem 14.4.

Now, m and n will intersect at a point O′. Also, n will intersect ←→AC
at a point O with O external to the given choice of AC.
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Here is an illustration of what
we have developed so far, as it
might appear in the circle model
of Elliptic geometry. Note that we
must be careful not to make con-
clusions based on this figure, but
use it only as a visual aid.

Suppose O = O∗, then O′ = O∗ and we have that Y ′ = Y ∗. Thus
CX ′ ‖ BY ′ or CY ′ ‖ BX ′. By Theorem 14.4, we have that X ′ and Y ′
are interior to BC/F .

Suppose O 6= O∗. Since two external points of a segment are internal
points of the complimentary segment, we have by Theorem 14.4 that
CO ‖ AO∗ or CO∗ ‖ AO. Then, since Y is not on ←→AC or ←→BC, we
have a perspectivity defined from Y mapping ←→AC to ←→BC. Under this
perspectivity, A goes to B, C goes to itself, O goes to Y ′, and O∗ goes
to Y ∗. By axiom E-II-6, we have CY ′ ‖ BY ∗ or CY ∗ ‖ BY ′. Since Y ∗ is
internal to BC/F , we have by Theorem 14.4, that Y ∗ and Y ′ are internal
to BC/F . We conclude that X ′ and Y ′ are interior to BC/F .

The proof of the second part of the theorem follows immediately by
the properties of segments and their compliments. 2

The next result says that we can always embed a segment in a
“larger” segment. This is as close as we can get to the usual Euclidean
(and Hyperbolic) notion that segments can always be extended.

Theorem 14.10. Given a segment AB/C we can always find two
points E 6= F on ←→AB, exterior to AB/C, such that AB/C is con-
tained in EF/C.

Proof: By Theorem 14.3, AB/C has an interior point D. Also, BC/A
has an interior point E. Then BC ‖ AE and E cannot be one of A, B,
or C. If E = D, then BC ‖ AD, which contradicts DC ‖ AB, by axiom
E-II-4. Since D could be any interior point, we have that E must be
exterior to AB/C. By Corollary 14.5, AB ‖ DE.
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Consider segment AC
E

. E is an in-
terior point to this segment. Since
AE ‖ CB and AB ‖ ED, then
by Theorem 14.1 we have that
AE ‖ CD. By Theorem 14.4, D
is an interior point of AC

E
.

Since D is an arbitrary interior point of AB/C, then the interior of
AB/C is contained in AC

E
. Also, since AE ‖ BC, then B is interior to

AC
E

by Theorem 14.4. Thus, AB/C is contained in AC
E

.

Let F be an interior point of
AC/E. Then AC ‖ EF , and so
A is on EF/C. Since B and D
are also interior to AC

E
= AC/F ,

then AC ‖ BF and AC ‖ DF .

Since AE ‖ BC and AC ‖ EF , then by Theorem 14.1 we have AE ‖
BF and, since A is already interior to EF/C, then by Theorem 14.4,
B is also interior to EF/C. Likewise, since AE ‖ CD and AC ‖ FE,
then AE ‖ FD and D is interior to EF/C. We conclude that AB/C is
contained in EF/C.

Finally, we must show F is exterior to AB/C. Since F is interior to
AC/E, then F 6= A. If F = B, we would have AC ‖ EB. But this is
impossible, as we have shown that AE ‖ CB and we cannot have both
AC ‖ EB and AE ‖ CB by axiom E-II-4. If F = D (an arbitrary interior
point), we would have AC ‖ ED. But, we have shown that AE ‖ CD,
so AC ∦ ED by axiom E-II-4. Thus, F must be exterior to AB/C. 2

Exercise 14.2.1. Show that “three-point betweenness” from definition 14.3
satisfies axioms II-1 through II-3 of section 11.2. [Note: in axioms II-1 to II-3
you will need to substitute “segment” for “line”.]
Exercise 14.2.2. Prove Theorem 14.2.
Exercise 14.2.3. Prove Theorem 14.3.
Exercise 14.2.4. Prove Theorem 14.8. [Hint: Use Theorem 14.7 and the
fact that every pair of distinct lines intersects.]
Exercise 14.2.5. Finish the uniqueness part of the proof of Theorem 14.6.
[Hint: suppose there were two points common to the intersection of AX/C
and XB/C. Find a contradiction to axiom E-II-5.]
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14.3 ORIENTATION, RAYS, AND ANGLES
From segments the next logical geometric concept to define would be
rays. However, this will be a bit tricky, as we cannot assume that a
point on a line divides the line into two separate pieces. What is needed
is an idea of orientation from a point on a line, so we can talk about
opposite directions from a given point. The development we give below
is that of H.M.S. Coxeter in [6][Chapter 2]. We start with three points
on a line.

Theorem 14.11. Let A, B, and C be three points on a line. Then,

• the union of the segments AB/C, BC/A, and CA/B is the
entire line

• the pair-wise intersection of these segments contains only their
endpoints.

Proof:

• Let X be a point on the line that is not one of A, B, or C. Then,
by axiom E-II-4 we have that either AB ‖ CX or AC ‖ BX or
BC ‖ AX. By the definition of segments, either X is on AB/C or
CA/B or BC/A. On the other hand, if X is on AB/C or BC/A
or CA/B then it is on the line by Theorem 14.7 .

• Suppose X is on both AB/C and CA/B. If X is not one of the
endpoints, then AB ‖ CX and AC ‖ BX. This is impossible by
axiom E-II-4. The proof for the other two pairings is similar. 2

In the Elliptic Model, the result
of this theorem is quite clear. The
three points divide the “line” into
three parts.

We can extend the preceding result to any set of n points on a
line.
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Theorem 14.12. Given n distinct points on a line, there is a label-
ing of the points A0, A1, . . . An−1 such that the union of the segments
ArAr+1/Ar−1, for r = 0, . . . n−1 is the entire line (with indices com-
puted mod n), and the pair-wise intersections of segments contains
only endpoints.

Proof: The proof is by induction on n. The case of n = 2 or n = 3 was
shown above. Suppose the results hold for n − 1 where n > 3. We will
show it holds for n. Of the n points, choose a subset of n−1. We can label
these A0, A1, . . . An−2 such that the union of the segments ArAr+1/Ar−1,
for r = 0, . . . n− 2 is the entire line (with indices computed mod n− 1),
and the pair-wise intersections of segments containing only endpoints.
LetX be the nth point. Clearly,X must be an interior point to one of the
segments ArAr+1/Ar−1. Assume it is in A1A2/A0. Then, A1A2 ‖ A0X.
As in the proof of the previous theorem, X will divide A1A2/A0 into two
parts A1X/A0 and XA2/A1 By re-labeling X to be A2 and shifting the
index of A2, A3, . . . , An−2 up one unit, the result is true for n points. 2

Here is an example in the Ellip-
tic Model of five points dividing a
line.

We can now define an orientation based on triples of points.

Definition 14.5. Let ABC and DEF be two triples of points on
a line. Then, the distinct points of this set (some points in the first
triple may coincide with points of the second triple) can be labeled
A0, A1, . . . , An−1 where n = 3, 4, 5, or 6 as in accordance with the
previous theorem. We can assume the labeling is such that A = A0,
B = Ab, and C = Ac, where b < c. Then, D = Ad, E = Ae, and
F = Af . If d < e < f or e < f < d or f < d < e we say that the
two triples have the same orientation. Otherwise, we say the triples
have opposite orientations.
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Here is an example in the circle
model of Elliptic geometry. ABC
has indices 0 < 1 < 3 but DEF
has indices 2 > 1 and 1 < 4.
These two triples have opposite
orientations.

We can now define what we mean by a ray. Intuitively, a ray should
be the set of points on a segment, say AB/C, together with points D
outside of the segment that are in the same direction as points A, B,
and C.

Definition 14.6. The ray −→AB/C from point A to point B (relative
to C) is the set of points on AB/C together with points D that are
exterior to AB/C on ←→AB such that ABC and ABD have the same
orientation.

In the exercises it is shown that ABC and ABD have the same ori-
entation if and only if AB does not separate CD. Thus, points D on−→
AB/C that are not on AB/C are by definition in the complimentary
segment AB

C
. This means (using Theorem 14.7) that a ray −→AB/C co-

incides with the entire line ←→AB. However, since ABC and ACB have
different orientations, we can still define opposite rays from a point.

Definition 14.7. Let A, B, and C be points on a line l. Then, rays−→
AB/C and −→AC/B are called opposite rays from A on l.

Here we have the two oriented rays from A illustrated by arrows in
our Elliptic Model:

We can now define an angle in Elliptic geometry.
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Definition 14.8. Let −→AB/X and −→AC/Y be two oriented rays not
lying on the same line. This pair of rays is called an angle, the rays
are called the sides of the angle, and A is called the vertex.

We can also define the interior of an angle.

Definition 14.9. Let −→AB/X and −→AC/Y be two sides of an angle
and let XY /Z be a segment with exterior point Z. A point P is
called an interior point of the angle (relative to Z) if it is not an
element of one of the sides and one of the choices for PZ intersects
exactly one side of the angle. A point that is not in the interior,
and not on one of the sides, will be called an exterior point of the
angle. Z will be an exterior point.

We note here that this definition implies that an exterior point R
will have the property that one choice of RZ will intersect neither side
of the angle and the other choice of RZ will intersect both sides. This is
due to the fact that a ray is also a line and every pair of lines intersects.
Also, for an interior point P , one choice of PZ will intersect one side of
the angle, which means the other choice must intersect the other side.

Here, we have an illustration of
this definition in the circle model
of Elliptic geometry. Point P is
an interior point of ∠BAC. One
choice of PZ intersects −→AB/X at
D and the other choice intersects−→
AC/Y at E.

There is a duality to the definition of interior and exterior points
in the definition of an angle. The “choice” of XY /Z as having exterior
point Z is completely arbitrary. We could just as well have chosen the
complimentary segment XY /Q where Q was an interior point to XY /Z.
This choice of segment would flip the roles of exterior and interior points
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of the angle. So, there are two possible choices for an angle just as there
were two choices for a segment.

It can also be shown, using the definition of an angle, that an an-
gle divides the points in the Elliptic plane into three disjoint groups –
those on one of the sides of the angle, those interior, and those exterior
(exercise).

Since the definition of interior points of angles involves interior points
of segments, and since interior points of segments are defined by separa-
tion, then interior points of angles can be characterized by separation,
much like they are in Euclidean geometry.

Theorem 14.13. Let ∠BAC be an angle with vertex A. Let the
interior of the angle be defined with respect to a given exterior point
Z. Let P 6= A be a point and let ←→PZ intersect −→AB/X at D and
−→
AC/Y at E. Then, P is an interior point if and only if PZ ‖ DE.

Proof: The proof relies on the definition of interior points of angles and
the defintion of segments in terms of separation. This is a good review
of separation concepts and is left as an exercise. 2

The next theorem will be useful in analyzing interior points of an
angle.

Theorem 14.14. Let ∠BAC be an angle with vertex A. Let P be
an interior point (with respect to a given exterior point Z). Then,
all points Q 6= A on ←→AP are interior points of the angle.

Proof:

Since P is an interior point of the
angle, then there is a choice of PZ
that intersects −→AB/X at D and
the complimentary segment inter-
sects−→AC/Y at E. By the previous
theorem we have PZ ‖ DE.
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We know that ←→QZ intersects −→AB/X at some point F and intersects
−→
AC/Y at some point G. Using Axiom E-II-6, and the perspectivity from
point A, we see that the separation PZ ‖ DE must be preserved on←→QZ.
That is, QZ ‖ FG. By the previous theorem we have that Q is interior
to the angle. 2

The next theorem tells us how separation can be used to differentiate
interior versus exterior points in an angle.

Theorem 14.15. Let ∠BAC be an angle with vertex A. Let P
be an interior point (with respect to a given exterior point Z). Let
T 6= A be a point on −→AC/Y . Let S be the intersection of ←→PT with
−→
AB/X. If R is a point on ←→PT with ST ‖ PR, then R is exterior to
the angle.

Proof: It is clear that S 6= A as P is not on −→AC/Y . Likewise, R 6= A.
Consider ←→RZ. If this line passes through A, then, R must be an exterior
point, because if it was interior, then by the preceding theorem, Z would
be an interior point, which it is not.

If ←→RZ does not pass through A,
then it will intersect −→AB/X at
some point F , −→AC/Y at some
point G and ←→AP at some point
Q. Since Q is on ←→AP then by the
previous theorem Q is an interior
point. By Theorem 14.13, we have
QZ ‖ FG.

Using Axiom E-II-6, and the perspectivity from point A, we see that the
separation ST ‖ PR must be preserved on the perspectively mapped
points on ←→RZ. Thus, we have FG ‖ QR. Then, since FG ‖ QR and
FG ‖ QZ, then by Axiom E-II-5, we know that FG ∦ RZ. This says
that R cannot be interior to the angle, by Theorem 14.13. 2

In Chapter 11 we showed that for a non-elliptic angle, if you consider
two points on the sides of that angle, then the segment defined by those
points has the property that interior points of the segment are interior
points of the angle. The next result is directly analogous to this property.
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Theorem 14.16. Given an angle ∠BAC suppose D and E are
points (distinct from A) on the two different sides of the angle.
Then there is a choice of DE such that all points interior to that
segment are interior points of the angle.

Proof: First, we show that there is a choice of DE that has an interior
point of the angle. We know that ←→DZ will intersect ←→AC at some point
W 6= A, as the two sides are on different lines and Z is not on a side.
By Theorem 14.3, we know that BW/Z has an interior point P . Then,
BW ‖ ZP , and P is interior to the angle by the definition of interior
points. We know that ←→AP will intersect ←→DE at some point Q, and Q is
on a choice of DE. By Theorem 14.14, Q is interior to the angle.

With Q on the given choice of DE, suppose R is another interior
point of the segment.

Then, by Theorem 14.4 we have
DQ ‖ ER or DE ‖ EQ. Without
loss of generality we assume DQ ‖
ER. Since every line has at least
three points, then on −→AQ there is
a point S distinct from A and Q.
By Theorem 14.14, S is interior
to the angle. Also, S is not on our
choice of DE, as the sides of the
angle are not collinear.

Now, let ←→ZS intersect the sides of the angle at F and G. We note that←→
DE and ←→ZS are distinct lines. Since S is interior to the angle, we have
ZS ‖ FG by Theorem 14.13. Let T be the intersection of ←→AR with
←→
ZS. The perspectivity from A will map D to F , R to T , Q to S and
E to G. Since DQ ‖ ER, then by axiom E-II-6, we have FS ‖ GT .
Since FS ‖ TG and FG ‖ SZ, we have by five-point betweenness that
FS ‖ TZ, and T must be interior to the angle by Theorem 14.13. Since
R is on ←→AT , then R is interior to the angle, by Theorem 14.14. 2

The next lemma will be useful in showing that interior points form
connected sets.
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Lemma 14.17. Let ∠BAC be an angle with vertex A. Let P and Q
be interior points (with respect to a given exterior point Z). Then,
there is a choice of PQ such that all points on that choice do not
lie on the sides of the angle.

Proof:

Since every pair of lines intersects,
then there is a choice of PQ, say
PQ/S for S on ←→PQ such that
PQ/S intersects −→AC/Y at some
point T . Then, the complimentary
segment PQ/T does not intersect
−→
AC/Y . We note that S can be
considered an arbitrary point on
PQ/T and that ST ‖ PQ.

Now, suppose that S is on −→AB/X. Then, by the preceding theorem, Q
would have to be an exterior point. Since Q is not exterior, then S is
not on −→AB/X. 2

It follows from this result that the interior of an angle is a connected
region.

Theorem 14.18. Let ∠BAC be an angle with vertex A. Let P
and Q be interior points (with respect to a given exterior point Z).
Then, there is a choice of PQ such that all points on that choice
are interior points to the angle.

Proof: In the proof of the preceding theorem, for the given choice of PQ,
and for a point S on PQ, consider the triple PSZ. −→AC/Y intersects
a choice of PZ and −→AB/X intersects the complimentary segment to
PZ. By the preceding theorem we know that −→AB/X and −→AC/Y do not
intersect PS. We know that −→AC/Y intersects a choice of SZ (axiom
E-1-5). By Theorem 14.9, −→AB/X intersects the complimentary choice.
Thus, S is an interior point to the angle. 2

We are now in a position to define triangles.
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Definition 14.10. Given three non-collinear points A, B, and C,
the triangle ∆ABC is the set of points on a choice of the three
segments AB/X, BC/Y , and CA/Z. These segments are called
the sides of the triangle.

Definition 14.11. A point is in the interior of triangle ∆ABC if it
is in the intersection of the interiors of its angles ∠CAB, ∠ABC,
∠BCA which are defined by rays −→AB/X, −−→BC/Y , and

−−−−→
CA/Z (rays

defined by the sides of the triangle). (Each angle is defined relative
to an externally chosen point.) A point is in the exterior of the
triangle if it is not in the interior and is not on any side.

For brevity of notation, we will refer to the interiors of angles with-
out always referencing a chosen external point. We can now define a
betweenness property for rays that is exactly analogous to the between-
ness property we had in Chapter 11.

Definition 14.12. A ray −−→AD is between rays −→AB and −→AC if −→AB
and −→AC are not opposite rays and D is interior to ∠BAC.

Theorem 14.19. (Crossbar Theorem) If −−→AD is between −→AB and
−→
AC then −−→AD intersects a choice of segment BC at an interior point
of ∠BAC.

Proof: The proof is left as an exercise. 2
The following is the converse to the preceding result.

Theorem 14.20. If D is a point on a segment BC/Z, then there is
a point A not on ←→BC such that −−→AD is between −→AB/X and −→AC/Y ,
for a choice of each ray.

Proof: Axiom E-1-3 guarantees the existence of a point A not on ←→BC.
By definition, if D is on BC/Z, then BC ‖ DZ. But, this also means
that C is on DZ/B and B is on the complimentary segment DZ/C.
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Thus, D is interior to angle ∠BAC and ray −−→AD is between −→AB/X and
−→
AC/Y . 2

We note here that if we restrict our attention to only those points
(and segments) that lie on a choice of segment BC, then, points on that
segment will obey “three-point betweenness” (proved in the exercises).
Thus, by the preceding two theorems, there will be a duality between
points D on BC and rays −−→AD (with A not on ←→BC), just as we saw at
the end of Project 11.2.

Exercise 14.3.1. Let A, B, C, and D be points on a line. Show that ABC
and ABD have the same orientation if and only if AB does not separate CD.

Exercise 14.3.2. Show that there is at least one interior point to an angle.
[Hint: Use Theorem 14.3.]

Exercise 14.3.3. Prove Theorem 14.13.

Exercise 14.3.4. Using the definition of an angle, show that an angle divides
the points in the Elliptic plane into three mutually exclusive groups —those
that are on one of the sides of the angle, those that are interior points, and
those that are exterior points. [Hint: Let Q be a point that is not on a side
and not interior. Use exercise 14.3.2, five-point betweenness, and prior angle
theorems to show that Q is exterior.].

Exercise 14.3.5. Given an angle ∠BAC suppose D is a point on a side
of the angle (other than A) and P is an interior point of the angle. Show
that there is a choice of DP such that all points interior to that segment are
interior points of the angle. [Hint: Show that ←→DP intersects a side at a point
E and consider DP/E. The proof follows similar to that of Theorem 14.16].

Exercise 14.3.6. Prove Theorem 14.19.

14.4 AXIOMS OF CONGRUENCE
The axioms of congruence for Elliptic geometry are quite similar to those
found in section 11.5. The definition of triangle congruence for Elliptic
geometry is exactly the same as in section 11.5.

• E-III-1 If A and B are distinct points on ray
−→
AB/X and A′

is any other point, then for each (oriented) ray r′ =
−−→
A′B′/X ′

from A′ there is a unique point B′ on r′ such that B′ 6= A′

and AB/X ∼= A′B′/X ′.

• E-III-2 If AB/X ∼= CD/Y and AB/X ∼= EF/Z then CD/X ∼=
EF/Z. Also, every segment is congruent to itself.
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• E-III-3 If A ∗B ∗C/X on PQ/X, A′ ∗B′ ∗C ′/X ′ on P ′Q′/X ′,
AB/X ∼= A′B′/X ′ , and BC/X ∼= B′C ′/X ′, then AC/X ∼=
A′C ′/X ′. (Refer to definition 14.3 for three-point between-
ness)

• E-III-4 If AB/X ∼= A′B′/X ′, then the complimentary seg-
ments are congruent. That is, AB

X

∼= A′B′
X′

.

• E-III-5 Given ∠BAC, defined by rays
−→
AB/X and

−→
AC/Y ,

and given any ray
−−→
A′B′/X ′, there are exactly two distinct

rays,
−−→
A′C ′/Y ′ and

−−−→
A′C ′′/Y ′′, such that ∠BAC ∼= ∠B′A′C ′ and

∠BAC ∼= ∠B′A′C ′′.

• E-III-6 If ∠BAC ∼= ∠B′A′C ′ and ∠BAC ∼= ∠B′′A′′C ′′ then
∠B′A′C ′ ∼= ∠B′′A′′C ′′. Also, every angle is congruent to it-
self.

• E-III-7 Given two triangles ∆ABC and ∆A′B′C ′ if AB/X ∼=
A′B′/X ′ , AC/Y ∼= A′C ′/Y ′, and ∠BAC ∼= ∠B′A′C ′ then
there is a unique choice of side BC such that the two
triangles are congruent.

The first four congruence axioms are basically the same as the axioms
from section 11.5. By the work in that section, we know that segment and
angle congruence will be symmetric, reflexive, and transitive operations.
Axiom E-III-4 says that complimentary segments to congruent segments
are themselves congruent.

Axiom E-III-5 is somewhat different than its counterpart in sec-
tion 11.5. In that section, we could use plane separation to talk about
the unique angle congruent to a given angle. In Elliptic geometry, plane
separation does not hold, so the best we can do is to require that there
are two possible congruent angles.

Axiom E-III-6 is also different in that we can say that two triangles
are congruent in SAS congruence for a specific choice of the third side
in one of the triangles.

Let’s review the first few results of section 11.5 to see if they hold
with these new congruence axioms. Theorem 11.27 on isosceles triangles
is proved using SAS congruence on a given triangle ∆ABC. The proof
compares ∆ABC to ∆ACB. Axiom E-III-7 can be used in just the same
way for an isosceles triangle in Elliptic geometry, as these two triangles
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have the exact same third side, so the choice mentioned in the axiom is
clear, one chooses the same side.

Supplementary angles are defined as before. The definition specifies
two angles to be supplementary if they have a vertex and side in common
and the other sides form a line. In Elliptic geometry the rays forming a
side are also lines, so supplementary angles must be defined on the same
sides. This implies that the supplementary angle to an angle ∠BAC,
defined in relation to an exterior point Z, must be the dual choice of
angle defined in the discussion following definition 14.9.

A quick review of the proof of Theorem 11.28 shows that the proof
relies on the existence of two oppositely oriented rays from a point and
three-point betweenness. As seen earlier in this chapter, there is a way
to define opposite rays in Elliptic geometry, and by Theorem 14.10 we
know that we can always embed a segment (or three points) inside a
larger segment for which three-point betweenness holds. Thus, with some
adjustment, the proof of Theorem 11.28 is valid in Elliptic geometry.

Vertical angles are defined as before and the Elliptic version of The-
orem 11.29 follows immediately from Theorem 11.28.

The proof of ASA congruence (Theorem 11.30) will hold in Elliptic
geometry, with the proviso that the conclusion of the theorem statement
must be adjusted to say that the two triangles are congruent with a
choice of the remaining sides of one of the triangles. The Elliptic version
of Theorem 11.31 follows directly from Theorem 11.30.

The results on segment ordering in section 11.5.2 assume “three-
point” betweenness. A close reading of the proofs in that section shows
that they require only the notions of three-point betweenness, the no-
tion of opposite rays from a point, and the notion of interior points to
triangles. By suitable restriction to a particular Elliptic segment, we can
assume three-point betweenness holds on that segment, and we have
already provided suitable substitute definitions for opposite rays and
interior points to angles. Thus, the results from section 11.5.2 hold in
Elliptic geometry.

Similarly, all of the results from Project 11.5.2, up to Theorem 11.40,
will hold in Elliptic geometry. These results include properties of angle
order, addition, and subtraction. Theorem 11.40 has the assumption
that “two points C and D are on opposite sides of a line ←→AB,” whereas
Theorem 11.41 has the assumption that C and D are on the same side
of ←→AB. Since plane separation is not possible in Elliptic geometry, these
theorems cannot be directly translated to Elliptic geometry. However,
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the results of both theorems can be simplified to one single statement as
follows:

Theorem 14.21. If two points C and D are not on line ←→AB and
if AC ∼= AD and BC ∼= BD then ∠ABC ∼= ∠ABD and ∠BAC ∼=
∠BAD, and ∆ABC ∼= ∆ABD.

Proof: If C = D, the the result is clear. If C 6= D, then the proof will
follow similarly to the proof of Theorem 11.40.

Since C and D are not collinear with ←→AB, then one choice of CD
will intersect ←→AB at some point E.

If E = B, then ∆ADC is an
isosceles triangle. Thus, ∠ACB ∼=
∠ADB. By SAS we have that
∆ABC ∼= ∆ABD. The case
where E = A can be handled sim-
ilarly.

If E does not coincide with
A or B, then either ∠ADB >
∠AEB (shown here) or ∠ADB <
∠AEB. Suppose ∠ADB > ∠AEB.
Then, ∆ADC and ∆BDC are
isosceles and so ∠ADE ∼= ∠ACE
and ∠BDE ∼= ∠BCE. By the
angle sum property, ∠ADB ∼=
∠ACB. Then, by SAS we have
∆ABC ∼= ∆ABD.
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If ∠ADB < ∠AEB, we again
use isosceles triangles, and the an-
gle subtraction property, to show
∆ABC ∼= ∆ABD.

2
The Elliptic version of Side-Side-Side Triangle Congruence can be

proven using this result. The proof is left as an exercise.

Exercise 14.4.1. Prove SSS congruence in Elliptic geometry. [Hint: Refer
to the proof outlined in exercise 11.6.5.]

Exercise 14.4.2. Prove that Theorem 11.48 holds in Elliptic geometry.
[Hint: The proof can follow that of Theorem 11.48, using Axiom E-III-5 where
appropriate].

Exercise 14.4.3. Modify the proof of Theorem 11.28 so that it is valid in
Elliptic Geometry.

Exercise 14.4.4. Provide a counter-example in the sphere model of Elliptic
Geometry to show that AAS is not valid in Elliptic Geometry.

14.5 CONSTRUCTIONS AND DEDEKIND’S AXIOM
We now consider the construction results from sections 11.7 and the
segment and angle measure results from sections 11.8 and 11.9.

Theorem 11.43 states that an isosceles triangle can always be con-
structed on a given segment. The proof of this theorem will hold in
Elliptic geometry, as it is based on incidence properties, angle order, the
Crossbar Theorem, and basic results on isosceles triangles. All of these
properties have been shown to be true in Elliptic geometry.

Theorem 11.44 relies on the idea of plane separation, and thus cannot
be directly translated to Elliptic geometry. However, a workable substi-
tute is the following:
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Theorem 14.22. Suppose we have two supplementary angles
∠BAC and ∠CAD on line ←→BD. Also, suppose that ∠BAC ∼=
∠B′A′C ′ and ∠CAD ∼= ∠C ′A′D′. Suppose that angles ∠B′A′C ′
and C ′A′D′ are not the same angle. Then, angles ∠B′A′C ′ and
∠C ′A′D′ are supplementary.

Proof: By exercise 14.3.4 we know that D′ is either on one of the sides
of ∠B′A′C ′, or it is an interior point of this angle, or it is an exterior
point.

SupposeD′ is interior to ∠B′A′C ′.
By the theorems on angle order,
since D′ is interior to ∠B′A′C ′,
then ∠C ′A′D′ < ∠B′A′C ′. Since
∠BAC ∼= ∠B′A′C ′ and ∠CAD ∼=
∠C ′A′D′, then ∠CAD < ∠BAC.
But, this means that −−→AD is be-
tween −→AB and −→AC. This contra-
dicts the fact that D is on −−→AD.

Suppose D′ is exterior to
∠B′A′C ′. Then, by the duality of
angles (discussed when we defined
angles), we know that D′ will
be an interior point to the dual
choice of ∠B′A′C ′, say ∠C ′A′E′.
In the figure at the right we have
illustrated this possibility in our
circle model of Elliptic geometry.

By the theorems on angle order, since D′ is interior to ∠C ′A′E′,
then ∠C ′A′D′ < ∠C ′A′E′. But, by the Elliptic geometry version of
Theorem 11.28, we know that supplementary angles of congruent angles
are congruent and so ∠C ′A′E′ ∼= ∠CAD. By angle ordering, this im-
plies that ∠C ′A′D′ < ∠CAD. We are given that ∠CAD ∼= ∠C ′A′D′.
Our results on angle ordering say that only one of ∠C ′A′D′ < ∠CAD,
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∠C ′A′D′ > ∠CAD, or ∠CAD ∼= ∠C ′A′D′ can hold. This contradiction
shows D′ cannot be exterior to ∠B′A′C ′.

The only possibility left for D′ is that it is on one of the sides of
∠B′A′C ′. It cannot be on

−−→
A′C ′ by the definition of ∠C ′A′D′. Thus, D′

is on
−−→
A′B′. Since angles ∠B′A′C ′ and C ′A′D′ are not the same angle,

then ∠C ′A′D′ must be supplementary to ∠B′A′C ′. 2

This theorem can be used to prove that any angle can be bisected.

Theorem 14.23. Given angle ∠BAC we can find a ray −−→AD be-
tween rays −→AB and −→AC such that ∠BAD ∼= ∠DAC.

Proof:
By using properties of extension
of segments, we can assume that
AC > AB. On AC we can find
C ′ such that AB ∼= AC ′ ( Axiom
E-III-1).

Following the proof of Theorem 11.43, we can construct an isosceles
triangle ∆BC ′D on BC ′, using point C. (We assume that the choice of
BC ′ is such that the interior points on BC ′ are interior to ∠BAC. See
Theorem 14.16) From the construction, we have that C ′D ∼= BD and D
is either on CC ′ or BC.

Suppose that D is on CC ′.
Then, ∠BC ′D is supplemen-
tary to ∠AC ′B. Since ∆BC ′D
is isosceles, then ∠BC ′D ∼=
∠DBC ′. Also, since ∆ABC ′ is
isosceles, then ∠C ′BA ∼= ∠AC ′B.

So, we have that ∠BC ′D and ∠AC ′B are supplementary, ∠BC ′D ∼=
∠DBC ′, and ∠AC ′B ∼= ∠C ′BA. Also, since D is not on ←→AB we have
that ∠C ′BA is not the same angle as ∠DBC ′. Thus, by the previous
theorem, we have that ∠C ′BA and ∠DBC ′ are supplementary. But, this
implies that D is on ←→AB which contradicts incidence axiom E-I-2.



Foundations of Elliptic Geometry � 163

Since D cannot be on CC ′, then
it must be on BC, and so −−→AD is
interior to ∠BAC. Using SSS con-
gruence on triangles ∆DBA and
∆DC ′A we have that ∠BAD ∼=
∠DAC ′. 2

Theorem 11.46 ( the construction of a segment bisector) will now fol-
low directly, as it’s proof relies on the construction of isosceles triangles,
angle bisectors, and the Crossbar Theorem.

Perpendicular lines are defined the same way as before. Theo-
rems 11.47 and 11.48 deal with the construction of perpendiculars to
a line through points on the line and points off the line. The proof of
Theorem 11.47 transfers directly to Elliptic geometry. The proof of The-
orem 11.48 requires a bit more work, but the proof only needs a slight
adjustment and will be left as an exercise.

Dedekind’s Axiom

The construction for segment and angle measure found in sections 11.8
and 11.9 fundamentally depended on Dedekind’s axiom for (unbounded)
lines. Since lines in Elliptic geometry are bounded, we need to adjust this
axiom so that it applies to segments. With this restriction, we can use
the three-point betweenness language as we did in Chapter 11 with no
problems.

• IV-1 (Dedekind’s Elliptic Axiom) If the points on a seg-
ment s are partitioned into two nonempty subsets Σ1 and
Σ2 (i.e. l = Σ1∪Σ2) such that no point of Σ1 is between two
points of Σ2 and vice-versa, then there is a unique point
O lying on l such that P1 ∗ O ∗ P2 if and only if one of P1
or P2 is in Σ1, the other is in Σ2, and O 6= P1 or P2.

Dedekind’s axiom says that any splitting of a segment into points
that are on distinct opposite sides must be accomplished by a unique
point O acting as the separator. The pair of subsets described in the
axiom is called a Dedekind cut of the segment.

With this new version of Dedekind’s axiom, all of the results in sec-
tion 11.8 can be shown to be valid, with some slight modifications of
definitions.



164 � Exploring Geometry - Web Chapters

For example, let’s consider the notion of “laying off” a segment on a
ray. In Elliptic geometry, we will replace this idea with the following:

Definition 14.13. We say that segment CD is laid off n times (n
a positive integer) on a segment AB if there is a sequence of points
A0 = A,A1, A2, . . . , An on AB with Ak−1Ak ∼= CD for k = 1 . . . n
and A∗Ak ∗Ak+1 for k = 1 . . . n−1. We also write nCD for laying
off CD n times.

Note that this definition makes sense, as three-point betweenness has
its usual properties if we restrict all constructions to a single segment
AB.

The following lemma is analogous to Lemma 11.49 from section 11.8
with a slight change from rays to segments.

Lemma 14.24. Let segment CD be laid off n times on AB. Let
{Ak}nk=0 be the corresponding sequence of points on AB. Then, A ∗
Aj ∗ Ak for all j = 1 . . . n− 1, k = 2 . . . n, with j < k.

Proof: Exercise. 2
We can now state and prove Archimedes’ Axiom, in almost the same

fashion as we did in Chapter 11. In fact, we show in bold the parts of
the proof that are changed.

Theorem 14.25. (Archimedes’s axiom) Given AB and CD, there
is a positive integer n such that if we lay off CD n times on AB,
starting from A, then a point An is reached where either An = B
or An is exterior to AB.

Proof: Suppose that no such n exists, i.e. for all n > 1 the point An
reached by laying off CD n times is always interior to AB. Then,
for all n we have A ∗ An ∗ B. We will define a Dedekind cut for AB as
follows.

Let Σ1 be the set of points P on AB such that A ∗An ∗ P for all n.
Then, B is in Σ1 and Σ1 is non-empty. Let Σ2 be the set of remaining
points on AB . For all n, An is in Σ2 and Σ2 is non-empty. Also note
that A is in Σ2.

We now show that the betweenness condition in Dedekind’s axiom
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is satisfied. Let Q1, R1 be two points of Σ1 and Q2, R2 be points of Σ2.
Suppose that Q2 ∗Q1 ∗R2. Since Q2 and R2 are not in Σ1, then for some
n1, we must have A ∗Q2 ∗ An1 , and for some n2, we have A ∗ R2 ∗ An2 .
If n1 = n2 we can use the fact that A ∗ An2 ∗ An2+1, and four-point
betweenness, to show that A ∗ R2 ∗ An2+1. Thus, we can assume that
n1 6= n2, and without loss of generality, that n2 > n1. By the previous
lemma we know that A∗An1 ∗An2 . Since A∗Q2∗An1 , then A∗Q2∗An2 by
4-point betweenness. Using A∗Q2∗An2 , A∗R2∗An2 , and A∗An2 ∗Q1 we
have by 4-point betweenness that A ∗Q2 ∗Q1 and A ∗R2 ∗Q1. Thus, Q2
and R2 are on the same side of Q1. But, this contradicts the assumption
that Q2 ∗Q1 ∗R2, and so a point of Σ1 cannot be between two points of
Σ2.

Suppose on the other hand that Q1 ∗Q2 ∗R1. A similar argument to
the previous one will show that Q1 and R1 are on the same side of Q2,
which is again a contradiction.

Thus, the conditions for Dedekind’s Elliptic Axiom are satisfied and
there must be a unique point O with the properties stated in the axiom.
If O = An for some n, then A ∗O ∗An+1 would imply by the axiom that
An+1 is in Σ1, which is impossible. If O 6= An, but A ∗O ∗Ak for some k
then O would be between two points of Σ2, which would also contradict
Dedekind’s axiom. Thus, O must be in Σ1.

Now, O is on the same side of A as An (for any n), for if O was on
the other side for some n, then O ∗ A ∗ An, which contradicts the fact
that O is in Σ1. Also, AO > CD, for if AO < CD, then A ∗O ∗A1, and
O would be in Σ2.

Now, we will show that the existence of point O leads to a contradic-
tion. First, there is a pointX with A∗X∗O andXO ∼= CD, (Congruence
axiom E-III-1). Also, X 6= An for any n since, if it did match one of the
An, then O = An+1, and O would be in Σ2, which is a contradiction. For
P in Σ1, we have A∗O∗P . Since A∗X ∗O, then by 4-point betweenness
we have X ∗ O ∗ P . By Dedekind’s Elliptic Axiom X must be in Σ2.
Thus, there is an n > 0 such that A ∗ X ∗ An. Since A ∗ An ∗ O we
have by 4-point betweenness that X ∗ An ∗ O. By the previous lemma
A∗An ∗An+2. Thus, by 4-point betweenness we have A∗X ∗An+2. Since
A ∗ An+2 ∗O we have again by 4-point betweenness that X ∗ An+2 ∗O.
By segment ordering we have XO > XAn+2. Now, since A ∗ X ∗ An
and A ∗An ∗An+2 then by 4-point betweenness we have X ∗An ∗An+2.
Thus, XAn+2 > AnAn+2. By transitivity of segment ordering we have
XO > AnAn+2. But, AnAn+2 > AnAn+1 and AnAn+1 ∼= CD ∼= XO.
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Thus, XO > XO. Since a segment cannot be larger than itself we have
a contradiction. This completes the proof. 2

We now state the corresponding theorems for Elliptic geometry from
the rest of section 11.8. The proofs of these theorems require only slight
changes, like we did in the proof of Archimedes’ Axiom, and so will be
omitted or carried out in the exercises.

Theorem 14.26. Let AnBn be a nested sequence on a given seg-
ment AB. Then AnBn ⊂ AmBm for all n > m. Also, Am ∗Ar ∗Bn
and An ∗Br ∗Bm for any n,m with r > m.

Theorem 14.27. (Cantor’s Axiom) Suppose that there is an infi-
nite nested sequence of segments AnBn (n > 0) on a segment AB.
Suppose there does not exist a segment which is less than all of the
segments AnBn. Then, there exists a unique point O belonging to
all the segments AnBn.

The notion of “adding” segments needs no modification, as the sum
is restricted to a given segment.

Definition 14.14. Given segments a = AA′, b = BB′, and c =
CC ′, we say that c is the sum of a and b, denoted c = a+ b, if there
exists a point X with C ∗X ∗ C ′, AA′ ∼= CX, and BB′ ∼= XC ′. If
we refer to a + b, then it is implicitly assumed that there exists a
segment c such that c = a+ b.

Theorem 14.28. Given segments a, b, c, d we have

(i) a+ b = b+ a

(ii) (a+ b) + c = a+ (b+ c)

(iii) if a < b then a+ c < b+ c

(iv) if a < b and c < d then a+ c < b+ d

(v) if a = b and c = d then a+ c = b+ d
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Dyadic numbers are defined exactly the same as in Chapter 11, with
the proviso that for a given segment a, the dyadic number m

2n a is not
necessarily defined for all m. With this understanding, we have

Theorem 14.29. Let w and v be dyadic numbers and a and b
segments. Then,

(i) wa = wb iff a = b.

(ii) w(a+ b) = wa+ wb

(iii) (w + v)a = wa+ va

(iv) if a < b then wa < wb

(v) if w < v then wa < va

(vi) if wa < wb then a < b

(vii) if wa < va then w < v

Segment measure can be defined in Elliptic geometry, just as it was
in Chapter 11.

Theorem 14.30. Given a segment u, which we will call a unit
segment, there is a unique way of assigning a positive real number,
called the length and denoted by µ(a), to any segment a, such that
for all segments a and b we have

(i) µ(a) > 0 for all a.

(ii) a ∼= b iff µ(a) = µ(b).

(iii) a < b iff µ(a) < µ(b).

(iv) µ(a+ b) = µ(a) + µ(b).

(v) µ(u) = 1.

The major difference with segment measure in Elliptic geometry, is
that there is no guarantee that it is an unbounded measure. In fact, in
Chapter 8, we showed that once we had a segment measure function
defined, then we could prove that all lines have finite length.
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For angle measure, we make note of the fact that the betweenness
properties for rays can be put into a one-to-one correspondence with
the betweenness properties for segments. Thus, all of the material on
angle measure in section 11.9 will hold in Elliptic geometry, with small
adjustments to proofs as we have shown above. We will not recall all of
these results here, but refer the reader to the end of section 11.9.

Line and Circle Continuity

Circles are defined in Elliptic geometry the same way they were defined
in definition 11.28.

Circle-Circle Continuity holds in Elliptic geometry.

Theorem 14.31. (Circle-Circle Continuity) Given two circles c1
and c2, with centers O1 and O2, if c1 contains a point P inside of
c2 and also contains a point Q outside of c2, then there are exactly
two distinct points of c1 that are also on c2.

Proof:

Let O1 be the center of circle c1
and let O2 be the center of circle
c2. Consider ∠PO1Q. Let −−−→O1M1
be the angle bisector. We can as-
sume M1 is on c1. If O2M1 has
measure equal to the radius of c2
we have found one intersection.
Otherwise, either the measure of
O2M1 is greater than the radius
of c2 or less than the radius of c2.

If the measure of O2M1 is greater than the radius of c2, than we
will consider ∠PO1M1, where P is inside c2 and M1 is outside c2. If
the measure of O2M1 is less than the radius of c2, than we will consider
∠M1O1Q, where M1 is inside c2 and Q is outside c2. In either case, we
now consider an angle whose measure is half that of ∠PO1Q.

We now find the angle bisector −−−→O1M2 (with M2 on c1) of this new
angle and again test to see if M2 is on c2. If so, we have found one
intersection. If not, we again look at one of the two half-angles with a
point inside c2 and a point outside c2. We continue sub-dividing in this



Foundations of Elliptic Geometry � 169

fashion, yielding a sequence of angles whose measures have length 1
2m

times the measure of ∠PO1Q. By the continuity of the reals, and of
angle measure, this sequence has angles whose measures approach zero,
and thus there must be a ray −−→O1I (with I on c1) common to all the
sequence terms. We claim that the length of O2I is equal to the radius
of c2. To prove this claim we will use the distance function from a point
to an elliptic segment.

The distance function from a point to an elliptic segment can be
shown to be a continuous function. The proof uses the trigonometry of
elliptic right triangles. We will not take the time here to carry out this
development, but a full explanation can be found in [19] Chapter 7. The
proof only depends on results we have already shown for elliptic angles
and segments and also depends on the continuity of segment and angle
measure, which has been shown earlier in this chapter.

Assuming the continuity of the distance function, consider each angle
in the bisection process discussed above. Let this angle be PmO1QM ,
where PM and QM are on c1 and Pm is inside c2 and Qm is outside c2.
Let r2 be the radius of c2. Then, the distance from O2 to Pm is less than
r2 and the distance from O2 to Qm is greater than r2. By the continuity
of the distance from O2 to the segment PmQm there must be a point Im
on this segment such that the distance from O2 to Im equals r2.

Now, as the sequence of angles approaches zero, the segments PmQm

must have measures approaching zero. Thus, these segments must ap-
proach a point I and all the Im’s must also approach I. 2

Just as before, we can use this axiom to prove Euclid’s Proposition
1 on the construction of equilateral triangles.

We conclude that Euclid’s Propositions 1-15, 23, and the ASA trian-
gle congruence result all hold in Elliptic geometry. It would be natural
to ask whether the same is true for Euclid’s Proposition 16 – the Ex-
terior Angle Theorem. In Chapter 8 we saw that in Elliptic geometry
it is possible to construct a triangle with two right angles. For such a
triangle, the Exterior Angle Theorem fails. The material in Chapter 8
was carefully laid out so that all arguments and proofs were based solely
on Euclid’s Propositions 1-15, 23, and the ASA triangle congruence. We
also made use of results about reflections and rotations from Chapter 5,
as these were based solely on Euclid 1-15, 23, and ASA.
Exercise 14.5.1. Prove Lemma 14.24.

Exercise 14.5.2. Find the places in the proof of Theorem 11.52 from Chap-
ter 11 that need modification to prove Theorem 14.27. List these changes.
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Exercise 14.5.3. Find the places in the proof of Theorem 11.53 from Chap-
ter 11 that need modification to prove Theorem 14.28. List these changes.

Exercise 14.5.4. Find the places in the proof of Theorem 11.54 from Chap-
ter 11 that need modification to prove Theorem 14.29. List these changes.

Exercise 14.5.5. Find the places in the proof of Theorem 11.55 from Chap-
ter 11 that need modification to prove Theorem 14.30. List these changes.


