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Universal Foundations

This present investigation is a new attempt to establish for
geometry a complete and as simple as possible, set of axioms
and to deduce from them the most important geometric the-
orems in such a way that the meaning of the various groups
of axioms, as well as the significance of the conclusions that
can be drawn from the individual axioms, comes to light.
– David Hilbert in Foundations of Geometry [13] (1862–1943)

Throughout this text we have tried to do as Hilbert suggested in the
introduction to his classic work on the foundations of geometry. There
has been an emphasis on presenting the various strands of geometry in
the most straight-forward and direct manner possible. We have worked
to enhance our intuitive understanding of geometric concepts through
the use of computer and group lab projects.

At the same time, we have tried to be as complete as possible in our
exploration of geometric ideas by delving deeply into such topics as the
complex function theory underlying a full development of the models of
hyperbolic geometry.

What has been missing from this focus on completeness is a rigorous
axiomatic treatment of the three major geometries covered in this text –
Euclidean, Hyperbolic, and Elliptic. In Chapter 1 we saw that Euclid’s
original set of five axioms for Euclidean geometry were by no means
complete. There were many hidden assumptions in Euclid’s work that
were never given a firm axiomatic basis. Among these assumptions were
properties of continuity of geometric figures such as circles and lines, the
unboundedness of the Euclidean plane, the transformations of figures,
and even the existence of points.
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Many attempts have been made to develop a more complete ax-
iomatic basis for Euclidean geometry. We covered one such system,
Birkhoff’s system, in Chapter 3. This system was extremely economical,
requiring only four axioms. It’s elegance and power come from setting
the foundations of geometry firmly on a model of analytic geometry, on
the properties of the real numbers.

In this chapter we will look at an axiomatic system that is much
more in the style of Euclid in that it is based on geometric rather than
arithmetic foundations. Hilbert achieves an integration of the synthetic
approach of classical geometry with the analytic approach of more mod-
ern systems of geometry. He does this by showing that the real numbers
can be constructed geometrically. Hilbert’s axiomatic development of ge-
ometry thus includes an axiomatic basis for analysis, and as such, is one
of the great achievements of the modern era in mathematics.

Hilbert uses five groups of axioms to form the foundation of Eu-
clidean geometry: axioms of incidence, betweenness, congruence, conti-
nuity, and parallelism. The first four groups of axioms can also serve as a
foundational basis for Hyperbolic Geometry. With some tweaking of the
betweenness axioms, the results of this chapter also form a solid foun-
dation for Elliptic geometry. This will be covered in detail in Chapter
14.

11.1 INCIDENCE GEOMETRY
Perhaps the most obvious flaw in Euclid’s set of axioms is his assumption
that points and lines exist, and that points are incident on lines in the
way we expect them to be. Hilbert’s first four axioms are designed to
put these intuitive notions on a firm footing.

Hilbert also realized that Euclid’s definitions of a point as “that
which has no part” and of a line as “breadth-less length” were basically
meaningless, and thus did not define these two terms. Hilbert realized
that what was important was how these undefined entities related to one
another, their relational properties. These are the properties spelled out
in the first five axioms of incidence.

• I-1 Through any two distinct points A and B there is al-
ways a line m.

• I-2 Through any two distinct points A and B, there is not
more than one line m.
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• I-3 On every line there exists at least two distinct points.
There exist at least three points not all on the same line.

• I-4 Through any three points not on the same line, there
is one and only one plane.

Note that the idea of incidence itself is not defined in the axioms.
This is another undefined term that is given relational properties. The
precise definition of a point being incident on a line, or lying on a line,
is not important. What is important is how the property of incidence is
manifested by points and lines. These properties are spelled out in the
axioms.

The first axiom is essentially the same as Euclid’s first axiom in the
Elements, although Euclid’s axiom uses the language of “drawing” or
“constructing”, which is problematic. In Hilbert’s formulation of this
axiom, there is no reference to any physical action, only the connection
of two points with a line.

The last axiom seems somewhat odd. Hilbert’s original set of axioms
were designed for three-dimensional geometry, with plane a third unde-
fined geometric object. Hilbert developed an additional set of four axioms
to cover incidence properties of planes. We will abbreviate Hilbert’s set
of incidence axioms to the four axioms above, which focus on planar
geometry, and use the fourth axiom to ensure that when we speak of the
“plane”, there is a unique object of reference.

Hilbert’s insistence on focusing on the relational properties of geo-
metric objects, rather than their definitions, is evidenced by a famous
adage attributed to him: “One must be able to say at all times —instead
of points, lines and planes —tables, chairs, and beer mugs.”

Let’s see how these very basic axioms of incidence can be used to
further our knowledge of lines and points. For our proofs we will assume
basic rules of logical reasoning. For example, two things are either equal
or not equal. Also, we will assume that proof techniques such as proof
by contradiction are valid.

Theorem 11.1. Given two distinct lines l and m, they have at
most one intersection point.

Proof: Suppose that l and m intersected at two distinct points A 6=
B. Then, through A and B we would have two distinct lines, which
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contradicts axiom I-2. Thus, they cannot intersect in two distinct points.
2

Theorem 11.2. For every line there is at least one point not on
that line.

Proof: Exercise. 2

Theorem 11.3. For every point there is at least one line not pass-
ing through it.

Proof: Exercise. 2

Theorem 11.4. For every point there are at least two distinct lines
that pass through it.

Proof: Exercise. 2

Theorem 11.5. There exist three distinct lines such that no one
point is on all three lines.

Proof: Exercise. 2
We note here that Hilbert’s incidence axioms are suitable for Hyper-

bolic and Elliptic geometry, as incidence properties for all of the models
we have considered for these geometries satisfy Hilbert’s four incidence
axioms.

11.2 BETWEENNESS GEOMETRY
The incidence axioms of the preceding section deal with issues of exis-
tence of lines and points.

The betweenness axioms deal with the ordering of points on a line. For
this reason, they are often called the axioms of order. These axioms are
necessary to make explicit what is meant by saying a point is “between”
two other points on a line. Again, we do not specifically define what
betweenness means. We instead provide axioms for how betweenness
works.



Universal Foundations � 5

• II-1 If B is a point between A and C (denoted A ∗ B ∗ C)
then A, B, and C are distinct points on the same line and
C ∗B ∗ A.

• II-2 For any distinct points A and C, there is at least one
point B on the line through A and C such that A ∗ C ∗B.

• II-3 If A , B, and C are three points on the same line, then
exactly one is between the other two.

• II-4 (Pasch’s Axiom) For this axiom, we need the following
definition.

Definition 11.1. The segment AB is defined as the set of
points between A and B together with A and B.

Let A, B, and C be three non-collinear points and let m
be a line that does not contain any of these points. If m
contains a point of segment AB, then it must also contain
a point of either AC or BC.

We define a ray as follows:

Definition 11.2. The ray from A through B is the set of points on
segment AB together with points C such that A ∗B ∗ C.

Intuitively, axiom II-2 guarantees that the ray from A through B
will be “bigger” than the segment AB. This is essentially the same as
Euclid’s second axiom on extending lines.

Axiom II-3 guarantees that we have a well-defined ordering of points.
It rules out the case of interpreting circles as lines, as we did in the
development of Elliptic geometry. Given three equally-spaced points on
a circle, any of the three points could be considered as between the
other two. Thus, Hilbert’s third axiom on betweenness fails for Elliptic
geometry. In Chapter 14, we will define an alternative set of betweenness
axioms, based on sets of four points, that will capture the notion of
betweenness in Elliptic geometry.

Although the betweenness axioms cannot be used for Elliptic geom-
etry, they are valid for all of our models of Hyperbolic geometry.

With rays and segments defined, we can describe the relationship of
rays and segments to lines.
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Theorem 11.6. Given A and B we have :

•
−→
AB ∩

−→
BA = AB,

•
−→
AB ∪

−→
BA =←→AB.

Proof:

• Clearly, by using the definitions of ray and segment we have that
AB ⊂

−→
AB and AB ⊂ −→BA. So, AB ⊂ −→AB ∩ −→BA.

On the other hand let C be an element of this intersection. If C is
A or B then C is clearly on AB. Assume C is not A and not B.
Since C is on −→AB, then it is either between A and B or satisfies
A ∗B ∗C. Likewise, if C is on −→BA then it is either between A and
B or satisfies C ∗A∗B. Since C is on both rays then we must have
by axiom II-3 that C is between A and B, and thus C is on AB.
Thus, −→AB ∩ −→BA ⊂ AB.
Since AB ⊂ −→AB ∩−→BA and −→AB ∩−→BA ⊂ AB, then −→AB ∩−→BA = AB

• Let C be an element of −→AB ∪ −→BA. If C = A or C = B then, C is
certainly on the line ←→AB. Otherwise, suppose C is on −→AB with C
not equal to A or B. Then, either A ∗C ∗B or A ∗B ∗C. But, this
implies by axiom II-1 that A,B,C are collinear. Likewise, if C is
on −→BA, then A,B,C are collinear. In either case, we get that C is
on ←→AB.
On the other hand let C be an element of ←→AB. By axiom II-3 we
see immediately that C is in −→AB or in −→BA. Thus, C is in −→AB∪−→BA.

2
The next theorem guarantees that there is always a point between

two distinct points.

Theorem 11.7. Given points A 6= B there is always a point C
with A ∗ C ∗B. (see Figure 11.1)

Proof: Note that this is slightly different than axiom II-2. Here we
are saying that we can always find a point between two given points. In
axiom II-2 we are saying that we can always find a point “outside” the
given pair.
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Figure 11.1

By Theorem 11.2 there is a point D not collinear with A and B.
Axiom II-2 says that we can find a point E with A∗D∗E. The incidence
axioms guarantee the existence of the line through E and B. Again, using
axiom II-2 we can find a point F on ←→EB so that E ∗ B ∗ F . Now, ←→DF
contains a point (D) of AE. Also, ←→DF intersects ←→EB at F , which is
outside EB and cannot intersect this line more than once. Thus, by
axiom II-4 we have that←→DF must intersect AB at some point C. By the
definition of a segment, A ∗ C ∗B. 2

The next two theorems deal with the relations between four points
on a line. These results are so important that we will henceforth call
them the four-point properties.

Theorem 11.8. Let A, B, C, and D be distinct points on a line
l. If B is on AC and C is on BD, then B and C are both on AD.
(That is, if A ∗B ∗C and B ∗C ∗D then A ∗B ∗D and A ∗C ∗D)

Proof:

By Theorem 11.2 there must be a
point E that is not on l. By axiom
II-2 we can find a point F such
that C ∗E ∗F . Construct segment
AE and let m be the line ←→BF .
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By axiom II-4, since m inter-
sects AC at B, then it must inter-
sect EC or AE. If it intersected
EC, this must be at point F , but
then E ∗ F ∗ C, which is not pos-
sible, by axiom II-3. So, m inter-
sects AE at G. That is, A∗G∗E.
Similarly the line ←→CE intersects
DG at H.

Thus, we have ←→EF intersecting DG at H. By axiom II-4, ←→EF must
intersect AG or AD. If←→EF intersected AG, it must do so at E, but then
A ∗ E ∗ G, which contradicts (by axiom II-3) the fact that A ∗ G ∗ E.
Thus,←→EF intersects AD, which we know is at point C, and C is on AD.

If we begin with point B rather than C in the argument above, we
can likewise prove that B is on AD. 2

Theorem 11.9. Let A, B, C, and D be distinct points on a line l.
If B is on AC and C is on AD, then C is on BD and B is on AD.
(That is, if A ∗B ∗C and A ∗C ∗D, then B ∗C ∗D and A ∗B ∗D)

Proof: By Theorem 11.2 there must be a point G that is not on l.
By axiom II-2 we can find a point F such that B ∗G ∗ F .

If the line ←→CF intersected GB, it
must do so at F , but then G∗F ∗
B, which contradicts axiom II-3.
So, ←→CF cannot intersect GB. We
conclude that, since←→CF intersects
BD, then by axiom II-4, it must
intersect GD at H.

Thus, we have ←→FH intersecting DG at H. By axiom II-4, ←→FH must
intersect BG or BD. If←→FH intersected BG, it must do so at F , but then
B ∗ F ∗ G, which contradicts (by axiom II-3) the fact that B ∗ G ∗ F .
Thus,←→FH intersects BD, which we know is at point C, and C is on BD.

The rest of the proof follows from the previous theorem. 2

The next theorem delineates the line separation property.
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Theorem 11.10. (Line Separation) Let A be a point on a line l.
Then, A divides the set of all points X 6= A of l into two disjoint
classes, with two distinct points being in the same class if and only
if A is not between them.

Proof: Let B 6= A be a point on l. Let S1 be the set of all points C on l
such that C = B or A ∗B ∗ C or A ∗ C ∗B. Let S2 be the set of points
D on l such that D ∗A ∗B. By axioms II-1 and II-3, there are no points
in both S1 and S2, so these sets are disjoint.

Let X 6= A be a point on l. If X = B, then X is in S1. Otherwise, by
axiom II-3, one of A∗B ∗X, A∗X ∗B, or X ∗A∗B holds. Equivalently,
X is in S1 or S2. Thus, the union of S1 and S2 is equal to the set of
points X 6= A on l.

Now, we must prove that two distinct points are in the same class
if and only if A is not between them. Suppose two points C and D are
in S1. If C = B, then D 6= B and A ∗ B ∗D or A ∗D ∗ B, so A is not
between C and D. If D = B, a similar argument shows A is not between
C and D. If D = B, we can use a similar argument to show A is not
between C and D.

If C 6= D 6= B, then we have several options for what points are
between other points. If we have A ∗ B ∗ C and A ∗ D ∗ B, then by
Theorem 11.9, we have A ∗D ∗C. Likewise, if A ∗C ∗B and A ∗B ∗D,
we can show A ∗C ∗D. If A ∗B ∗C and A ∗B ∗D, could A be between
C and D? Suppose C ∗A ∗D. Then, D ∗B ∗A and D ∗A ∗C imply that
B ∗A∗C by the four-point properties. But, this contradicts A∗B ∗C, so
A is not between C and D. One can likewise show that A is not between
C and D for all other possible arrangements of A,B,C, and D.

Now, we must show that if a point C is in S1 and D is another point
such that A is not between C and D, then D is also in S1. We know
that A ∗B ∗C or A ∗C ∗B. Also, A ∗D ∗C or A ∗C ∗D. Suppose that
A ∗ B ∗ C and A ∗ D ∗ C. If B ∗ A ∗ D, then the four-point properties
(with A ∗D ∗C) imply that B ∗A ∗C, which contradicts A ∗B ∗C. So,
either A ∗ B ∗ D or A ∗ D ∗ B and D is in S1. Again, we can use the
four-point properties to prove that any arrangement of the points yields
D in S1.

It will be left as an exercise to show that two distinct points are in
S2 if and only if A is not between them. 2
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This theorem tells us that a point on a line divides, or separates, the
line into two sides. Thus, when proving results, we are justified in using
language that refers to one side or the other on a line.

Definition 11.3. We say two points B and C on a line l are on
the same side of A on l if B = C or A is not between B and C. We
say B and C are on opposite sides of A on l if they are not on the
same side of A.

Given a point A on a line l and and a point B 6= A, the ray −→AB is
defined in terms of betweenness properties. Axiom II-2 guarantees the
existence of a point C with C ∗ A ∗ B. Thus, C is on the opposite side
to B from A. By the preceding theorem, all points on the ray −→AC will
be opposite to B.

Definition 11.4. Two rays on a line l are opposite if they share
only one point in common.

The following Corollary follows immediately.

Corollary 11.11. To a given ray −→AB there is a point C with −→AC
opposite to −→AB.

The preceding set of theorems dealt with the separation of points
on a line. The next definition deals with the separation of points in the
plane.

Definition 11.5. Let l be a line and A and B points not on l. If
A = B or segment AB contains no points on l we say that A and B
are on the same side of l. If A is not equal to B and AB intersects
l we say that A and B are on opposite sides of l.



Universal Foundations � 11

Theorem 11.12. (Plane Separation) For every line l and triple
of points A, B, and C not on l we have:

1. If A and B are on the same side of l and B and C are on the
same side, then A and C must be on the same side of l.

2. If A and B are on opposite sides of l and B and C are on
opposite sides, then A and C must be on the same side of l.

3. If A and B are on opposite sides of l and B and C are on the
same side, then A and C must be on opposite sides of l.

l

A

B

C

Figure 11.2 Plane Separation

Proof:

1. If A = B or B = C the result is clear. We can assume A 6= B 6= C.
Suppose A and C were on opposite sides of l (Figure 11.2). Then,
line l would intersect AC and by axiom II-4 it would have to
intersect one of AB or BC, which contradicts the hypothesis.

The proofs of the second and third statements are left as exercises. 2
The next theorem guarantees that a line separates the plane into two

distinct sides.

Theorem 11.13. Every line l has exactly two sides and these two
sides have no points in common.
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l

A

O

B

C

Figure 11.3

Proof: There exists a point O on l and a point A not on l by the
incidence axioms (Figure 11.3). Axiom II-2 says that there is a point B
with B ∗O ∗ A. Then, by definition, B and A are on opposite sides of l
and l has at least two sides. Let C be any other point not on l and not
equal to A or B. By the Plane Separation Theorem if A and C are on
opposite sides, then C and B are on the same side. Likewise, if B and C
are on opposite sides, then C and A are on the same side. In any event,
C is on one of two sides. If C were on both sides, then by the first part
of the Plane Separation Theorem we would have that A and B would
be on the same side. This contradicts the fact that they are on opposite
sides. 2

The next two theorems guarantee that if the endpoints of a segment
are not on opposite sides of a line, then the internal points of the segment
are on the same side of the line.

Theorem 11.14. Given a line l and two points A and B on the
same side of l, then all points on segment AB are on this same side
of l.

Proof: Let C be a point on AB. If C was on the opposite side to A (or
B) then segment AC would intersect l at some point P , with A ∗P ∗C.
We know that A ∗ C ∗ B since C is on AB. Thus, A ∗ P ∗ B, by the
four-point properties. But, this contradicts the fact that A and B are on
the same side of l. 2
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Theorem 11.15. Given a line l and two points A and B with A
on l and B not on l, then all points on segment AB other than A
are on the same side of l as B.

Proof: This is basically a direct consequence of axiom II-3 and is left
as an exercise. 2

The next two theorems guarantee that we can split a segment or line
into two distinct parts.

Theorem 11.16. Given A ∗B ∗ C. Then AC = AB ∪BC and B
is the only point common to AB and BC.

Proof: We will first show that AC ⊂ AB ∪BC. Let P be a point on
AC. (i.e. A ∗ P ∗ C) We know that points A,B,C, and P are all on the
same line and that there is another point Q not on this line. We also
know that line ←→PQ exists.

Suppose that A and B were on the same side of←→PQ. We know that A
and C must be on opposite sides, as A intersects←→PQ at P . Thus, B and
C must be on opposite sides by the Plane Separation Theorem. Then
BC must intersect←→PQ. But,←→PQ already intersects the line through BC
at P . Thus, since lines can only have a single intersection point, we must
have that ←→PQ and BC intersect at P , and P is on BC.

If A and B are on opposite sides of ←→PQ, then P is on AB.
Thus, if P is a point on AC then P is on AB or on BC. So, AC ⊂

AB ∪BC.
Now, we will show that AB∪BC ⊂ AC. If P is on AB then A∗P ∗B.

We know that A ∗ B ∗ C. Thus, by the four-point properties, we know
that A ∗P ∗C. Likewise, if P is on BC then C ∗P ∗B. Also, C ∗B ∗A.
Again, using the four-point properties, we get C ∗ P ∗ A. Thus, if P is
on either AB or BC, we have that P is on AC. So, AB ∪ BC ⊂ AC.
We have already shown that AC ⊂ AB ∪ BC, so we conclude that
AC ⊂ AB = BC.

Finally, why will B be the only common point to AB and BC?
Suppose R is another point common to these two segments with R 6=
B. We know there is another point S not collinear with A, B, C, and
R. Consider the line ←→RS. Since R is on AB and on BC and R 6= B

then A and B are on opposite sides of ←→RS and so are B and C. Thus,
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A and C must be on the same side of ←→RS by the Plane Separation
Theorem. So, AC must not intersect ←→RS. However, we just proved that
AC = AB ∪ BC, and both AB and BC intersect ←→RS. This leads to a
contradiction and thus B is the only common point to AB and BC. 2

Theorem 11.17. Given A ∗ B ∗ C. Then −→AB = −→AC and B is the
only point common to rays −→BA and −−→BC.

Proof: First, we will show that −→AB ⊂ −→AC. Let P be on −→AB. If P is
on AC then it is on −→AC. Otherwise, by axiom II-3 either P ∗ A ∗ C or
A ∗ C ∗ P . If A ∗ C ∗ P then P is on −→AC. If P ∗ A ∗ C, then C ∗ A ∗ P .
Since C ∗ B ∗ A, by the four-point properties we have B ∗ A ∗ P , which
contradicts P being on ray −→AB. Thus, −→AB ⊂ −→AC.

Next we show that −→AC ⊂ −→AB. Let P be on −→AC. Then, A ∗ P ∗C or
A ∗ C ∗ P .

Suppose A ∗ P ∗ C. Then P is on segment AC. By the previous
theorem AC = AB ∪ BC, so either P is either on AB or on BC. If P
is on AB then clearly P is on −→AB. If P is on BC then C ∗ P ∗ B. We
are given that C ∗ B ∗ A. Thus, by the four-point properties we have
P ∗B ∗ A (or A ∗B ∗ P ) and P is again on −→AB.

Now, suppose that A ∗ C ∗ P . We are given that A ∗ B ∗ C. By the
four-point properties we have that A ∗B ∗ P and P is on −→AB.

Thus, −→AC ⊂ −→AB, and so −→AC = −→AB The proof that B is the only
point common to rays −→BA and −−→BC is left as an exercise. 2

This finishes our development of the notion of order for points, seg-
ments, and lines. In the next section we expand this notion of order to
include angles.

Exercise 11.2.1. Prove Theorem 11.2

Exercise 11.2.2. Prove Theorem 11.3

Exercise 11.2.3. Prove Theorem 11.4

Exercise 11.2.4. Prove Theorem 11.5

Exercise 11.2.5. In the proof of Theorem 11.10, show that two distinct
points C and D are in S2 if and only if A is not between them (refer to the
Theorem for definitions of S2 and A). [Hint: Consider the relation of B to D
and C.]

Exercise 11.2.6. Prove the second part of the Plane Separation Theorem.
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Exercise 11.2.7. Prove the third part of the Plane Separation Theorem.

Exercise 11.2.8. Prove Theorem 11.15.

Exercise 11.2.9. Finish the proof of Theorem 11.17. That is, show that if
A ∗B ∗ C, then B is the only point common to rays −−→BA and −−→BC.

Exercise 11.2.10. Prove that if A ∗ B ∗ C then segment AB is contained
in segment AC.

Exercise 11.2.11. Given a line l, a point A on l, and a point B not on
l, show that every point C 6= A on −−→AB is on the same side of l as B. [Hint:
Show by contradiction.]

Exercise 11.2.12. Prove that a line must have an infinite number of points.
[Hint: Start with two points on a line and repeatedly use Theorem 11.7 and
Theorem 11.16.]

11.3 PROJECT 19 - ANGLES AND RAY BETWEENNESS

Many of the projects we have covered so far involve computer ex-
ploration of geometric topics. In this project we will explore a more
abstract idea —the betweenness property defined by rays and angles. In
this project our exploratory “canvas” will be the canvas of our minds.
Feel free to draw diagrams for each new idea, but be careful to make
your arguments based solely on the theorems and axioms of preceding
sections.

To effectively explore the properties of angles, we need a good defi-
nition. The following definition follows the development used by Euclid
and precludes an angle of 0◦ or 180◦.

Definition 11.6. A pair of rays −→AB and −→AC, not lying on the same
line, is called an angle and is denoted by ∠CAB. The two rays are
called the sides of the angle and the common point A is called the
vertex of the angle.

We have looked at several notions of “side” in this chapter. There
was the notion of two sides on a line determined by a point on a line
(Line Separation). There was the notion of a line dividing the plane into
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two sides (Plane Separation). Now, we have sides of an angle. Usually, we
will be able to infer which of these different uses of “side” is applicable
by context. But, if there is the danger of confusion, we will refer to the
sides of an angle as “angle sides.”

Definition 11.7. Given an angle ∠CAB a point D is in the interior
of the angle if D is on the same side of ←→AB as C and if D is on the
same side of ←→AC as B.

The definition implies that the interior of an angle is equal to the
intersection of two sides of lines.

Exercise 11.3.1. Your first task is to use the axioms, definitions, and the-
orems of the preceding section to show the following result.

Theorem 11.18. Given an angle ∠CAB, if D is a point lying on line←→
BC, then D is in the interior of the angle if and only if B ∗D ∗ C. (see
Figure 11.4)

[Hint: This requires two proofs. For the first, assume D is in the interior and
D is not between B and C. Can you reach a contradiction? For the second,
assume B ∗D ∗C and D is not in the interior of the angle. Then, either DB
or DC intersect a side. Can you find a contradiction?]

A

B

C

D

Figure 11.4

Note that this theorem implies that if E and F are two points on
the two angle sides of ∠CAB, with E 6= A and F 6= A, then all points
on the segment EF are in the interior of the angle.

It is also an immediate consequence of Theorem 11.14 that if two
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points D and E are in the interior of an angle then all points on DE are
interior to that angle. (Verify this)

Additionally, from Theorem 11.15 we have that if D is interior to an
angle and B is on one of the two angle sides, and not the vertex, then
all points on BD other than B will be interior to the angle. (Verify this)

Thus, we have the following:

Theorem 11.19. Given ∠CAB let E and F two points with

• E and F on different angle sides, or

• E on an angle side and F interior, or

• E and F interior to the angle.

then all points on EF are interior to the angle, (except for endpoints
on the angle sides in the first two cases.)

Exercise 11.3.2. Your next task is to prove the following result on rays
within an angle.

Theorem 11.20. If D is a point in the interior of ∠CAB then

• All other points on ray −−→AD except A are also in the interior.

• No point on the opposite ray to −−→AD is in the interior.

• If C ∗A ∗ E then B is in the interior of ∠DAE.

[Hint: The situation is illustrated in Figure 11.5. For the first part of the
Theorem, use Exercise 11.2.11. For the second part, use contradiction. For
the third part, show that EB does not intersect −−→AD and does not intersect the
ray opposite to −−→AD. Then, use what you know about D to finish the proof.]

A

B

C

D
E

Figure 11.5
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We now define a betweenness property for rays.

Definition 11.8. A ray −−→AD is between rays −→AB and −→AC if −→AB
and −→AC are not opposite rays and D is interior to ∠CAB.

Note that the previous theorem guarantees that this definition does
not depend on the choice of D on −−→AD.

Review the following theorem and its proof carefully.

Theorem 11.21. (Crossbar Theorem) If −−→AD is between −→AB and
−→
AC then −−→AD intersects segment BC.

A

B

C

D

E

F

Figure 11.6

Proof: This theorem derives its name from the suggestive shape of
Figure 11.6. Assume that −−→AD does not intersect segment BC. Let −→AF
be the ray opposite to −−→AD. If −→AF intersects BC at some point P then
B ∗ P ∗ C and by Theorem 11.18 we have that P is interior to ∠CAB.
But this contradicts Theorem 11.20, part ii.

Since ←→AD = −−→AD ∪ −→AF we have that ←→AD does not intersect BC.
Thus, B and C are on the same side of ←→AD.

Now, let E be a point on ←→AC with E ∗ A ∗ C. (E exists by axiom
II-2). C and E are then on opposite sides of ←→AD.

Now, since B and C are on the same side of←→AD and C and E are on
opposite sides we must have (by the Plane Separation Theorem) that B
and E are on opposite sides. However, B is in the interior of ∠DAE by
part iii of the previous theorem. So, B and E must be on the same side
of ←→AD.
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Thus, the assumption that −−→AD does not intersect segment BC leads
to a contradiction, so −−→AD must intersect BC. 2

Note that since −−→AD must intersect segment BC at some point, we
can assume that D is that point of intersection. This allows us to say
that if −−→AD is between −→AB and −→AC then B ∗D ∗C. The converse is also
true.

Exercise 11.3.3. Prove the following converse to the Crossbar Theo-
rem.

Theorem 11.22. Given B ∗ D ∗ C there exists a point A not on ←→BC
such that −−→AD is between −−→AB and −→AC.

[Hint: Theorem 11.2 guarantees the existence of a point A not on ←→BC. Con-
sider ∠BAC and use Theorem 11.18]

We have shown that a ray is between two other rays iff a point is
between two other points. This says that points and rays are essentially
inter-changeable when it comes to the property of betweenness. This
property of inter-changeability is called duality. One amazing implication
of this is that any result on point betweenness will automatically generate
a corresponding result for ray betweenness, without the need for a proof!

For example,

Theorem 11.23. Suppose that we have rays −→EA, −−→EB, −−→EC, and−−→
ED. If −−→EB is between −→EA and −−→EC, and −−→EC is between −−→EB and−−→
ED, then −−→EB is between −→EA and −−→ED and −−→EC is between −→EA and−−→
ED.

Exercise 11.3.4. Find the Theorem in the last section for which this is the
dual.

Project Report

In this project we have developed the notion of angle and the betweenness
properties of of rays. In your project report provide clear and complete
solutions to the exercises. In your conclusion discuss briefly the signif-
icance of the axioms of order. Why are the results of this project, and
the preceding section, so important in a solid development of geometry?
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11.4 TRIANGLES AND BETWEENNESS
We now take a brief excursion into how betweenness and separation is
related to triangles.

Definition 11.9. Given three non-collinear points A, B, and C,
the triangle ∆ABC is the set of points on the three segments AB,
BC, and CA. These segments are called the sides of the triangle.

Definition 11.10. The interior of triangle ∆ABC is the intersec-
tion of the interior of its angles ∠CAB, ∠ABC, ∠BCA. A point
is in the exterior of the triangle if it is not in the interior and is
not on any side.

The following two theorems gives “Pasch-like” results on the inter-
section properties of rays with triangles.

Theorem 11.24. Given ∆ABC, if a ray r starts at an exterior
point of the triangle and intersects side AB at a single point D
with A ∗ D ∗ B then then this ray must also intersect one of the
other two sides of the triangle.

Proof:

Let the ray r be given as −−→XD,
where X is the exterior point. By
Pasch’s axiom (axiom II-4), we
have that line ←→XD will intersect
either AC or BC at some point
P . We need to show P is on −−→XD.

By axiom II-3 either X ∗D ∗ P , X ∗ P ∗D or P ∗X ∗D. In either
of the first two cases P is on −−→XD.

Suppose P ∗X ∗D. If P = C, then by Theorem 11.18, D is interior
to the angle ∠BCA and by Theorem 11.20, X is also interior to this
angle. But, this contradicts the fact that X is exterior.

Now, suppose P ∗ X ∗ D and P 6= C. Pasch’s axiom says that ←→XD
only intersects one of AC or BC. We assume it intersects AC, where
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P is on AC. Since D is interior to ∠ACB, by Theorem 11.19 we know
that X is interior to ∠ACB. Also, since ∠CAB is the same as ∠PAD
(−→AB = −−→AD and −→AC = −→AP ) we have by Theorem 11.18 that X is interior
to ∠CAB. Lastly, we know that A ∗ P ∗ C. By Theorem 11.18 we have
that P is interior to ∠ABC and thus, by Theorem 11.19, X is interior
to ∠ABC. But, if X is interior to all three angles it is interior to the
triangle, which is a contradiction. 2

Theorem 11.25. Given ∆ABC, if a ray r starts at an interior
point of the triangle then it must intersect one of the sides. If it
does not pass through a vertex it intersects only one side.

Proof: Let ray r be given as −−→XD where X is the interior point inside
the triangle and D is another point on the ray.
If D is exterior to the triangle
then X and D are on opposite
sides of one of the sides, and thus
XD must intersect this side. Since
segment XD is on −−→XD then the
ray intersects a side.

If D is on one of the sides of the triangle, clearly the results holds.

If D is interior to the triangle,
then −−→AD is between −→AB and −→AC.
By the Crossbar Theorem −−→AD in-
tersects BC at some point E, and
since D is interior to the trian-
gle, we must have that A ∗D ∗E.
(A and D are on the same side of
BC.)

Now, either X is on the same side of←→AE as C or is on the opposite side,
which is the side B is on. Thus, X is exterior to one of the two triangles
ACE and AEB. Let’s say it is exterior to AEB. Then, by Theorem 11.24
we have that −−→XD intersects side AB or BE. A simple argument shows
that BE is contained in BC. So, in all cases −−→XD intersects a side of
ABC. 2

We end this brief discussion of triangles with a nice result that we
will need later when discussing acute and obtuse angles.
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Theorem 11.26. Let
←→
AA′ be a line with A ∗O ∗A′. Let B 6= C be

two points on the same side of
←→
AA′. If −−→OB is between −→OA and −→OC,

then −→OC is between −−→OB and
−−→
OA′. (Figure 11.7)

A A’O

C

B’

B

C’

Figure 11.7

Proof: By the Crossbar Theorem, we know that −−→OB will intersect AC
at some point B′. Then, since −−→OB =

−−→
OB′ is between −→OA and −→OC, we

have A∗B′ ∗C by the duality of betweenness for points and angles. Con-
sider ∆AA′B′. We have that −→OC intersects side AA′. By Theorem 11.24,
this ray must then intersect one of AB′ or B′A′. But, if it intersects AB′
then this intersection point must be C since C is already on

←→
AB′ and

the lines ←→OC and ←→AB can only intersect once. But, if the intersection
point is C then A ∗ C ∗ B′, which contradicts the fact that A ∗ B′ ∗ C.
So, −→OC must intersect B′A′ at some point C ′. Then, B′ ∗ C ′ ∗ A′ and−−→
OC ′ is between

−−→
OB′ = −−→OB and

−−→
OA′. This finishes the proof. 2

Exercise 11.4.1. Prove that a line cannot be contained in the interior of a
triangle.

Exercise 11.4.2. Given ∆ABC, if a ray r starts at vertex A of the triangle
and passes through an interior point, show that it must intersect BC.

Exercise 11.4.3. Given ∆ABC, if a ray r starts at an exterior point of the
triangle and intersects side AB at a single point D with A ∗D ∗B, show that
this ray contains an interior point of the triangle.

Exercise 11.4.4. Show that the interior of a triangle is a nonempty set of
points.
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11.5 CONGRUENCE GEOMETRY
Just as the notions of incidence and betweenness were left undefined in
the preceding sections, the notion of congruence for segments and angles
will be left as undefined in this section. Our intuitive idea of congruence
tells us that two segments are the same if one can be exactly overlayed on
top of the other. This intuitive idea assumes the existence of functions
that transform segments to other segments. This transformational ge-
ometry presupposes an existing set of transformations that would itself
need an axiomatic basis.

By leaving the idea of congruence undefined for segments and angles
we allow for interpretations via different models. As long as the notion of
congruence in a particular model satisfies the following axioms, we can
apply subsequent theorems derived from those axioms to this model.

What the congruence axioms give us is a basis for comparing seg-
ments and rays in a similar fashion to how we compare numbers. Equality
for numbers is a property that is reflexive (every number equals itself),
symmetric (if a = b then b = a), and transitive ( if a = b and b = c,
then a = c). These three properties are critical to how we construct an
arithmetic system.

Additionally, the axioms will give us a way to “add” and “subtract”
segments and angles, again providing algebraic properties to the geom-
etry.

We will need the following definition of triangle congruence.

Definition 11.11. Two triangles are congruent if there is some
way to match vertices of one to the other such that corresponding
sides are congruent and corresponding angles are congruent.

If ∆ABC is congruent to ∆A′B′C ′ we shall use the notation
∆ABC ∼= ∆A′B′C ′. Thus, ∆ABC ∼= ∆A′B′C ′ if and only if

AB ∼= A′B′, AC ∼= A′C ′, BC ∼= B′C ′,∠A ∼= ∠A′,∠B ∼= ∠B′, and∠C ∼= ∠C ′.

We use the symbol “∼=” to represent the undefined notion of congru-
ence for segments and angles.

Here are the six axioms of congruence:
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• III-1 If A and B are distinct points and A′ is any other
point, then for each ray r from A′ there is a unique point
B′ on r such that B′ 6= A′ and AB ∼= A′B′.

• III-2 If AB ∼= CD and AB ∼= EF then CD ∼= EF . Also, every
segment is congruent to itself.

• III-3 If A ∗ B ∗ C , A′ ∗ B′ ∗ C ′, AB ∼= A′B′ , and BC ∼= B′C ′,
then AC ∼= A′C ′.

• III-4 Given ∠BAC and given any ray
−−→
A′B′, there is a unique

ray
−−→
A′C ′ on a given side of

←−→
A′B′ such that ∠BAC ∼= ∠B′A′C ′.

• III-5 If ∠BAC ∼= ∠B′A′C ′ and ∠BAC ∼= ∠B′′A′′C ′′ then
∠B′A′C ′ ∼= ∠B′′A′′C ′′. Also, every angle is congruent to it-
self.

• III-6 Given two triangles ∆ABC and ∆A′B′C ′ if AB ∼= A′B′,
AC ∼= A′C ′, and ∠BAC ∼= ∠B′A′C ′ then the two triangles
are congruent.

Let’s analyze these axioms a bit. First of all, axiom III-1 basically
covers our intuitive idea of segments being congruent via transformation.
We can think of A being moved to A′ and then B′ is where B would
move under the transformation. Axiom III-1 implies both Proposition 2
and Proposition 3 of Book I of Elements.

Another simple implication of this axiom is that if A,B,C are points
on a line with A ∗B ∗C (B is on AC), and B 6= C, then AB cannot be
congruent to AC.

Axiom III-2 covers a property that is like transitivity. III-2 also says
that congruence is a reflexive property. This is what Euclid would call a
“common notion”. We note here that this axiom implies the symmetry
of congruence, since if AB ∼= A′B′ and AB ∼= AB then by III-2 we have
that A′B′ ∼= AB. Also, once we have symmetry we have full transitivity,
since if AB ∼= CD and CD ∼= EF , then CD ∼= AB and CD ∼= EF , so
AB ∼= EF .

Axiom III-3 covers the intuitive idea that congruent segments that
are joined to other congruent segments make new segments that are
again congruent. This axiom can also be interpreted in terms of “adding”
congruent segments. It is sometimes called the “Segment Addition” ax-
iom.

Axioms III-4 and III-5 guarantee that angles can be “laid off” onto
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other rays and that angle congruence is transitive and reflexive (and thus
symmetric), just as was the case with segment congruence. Axiom III-4
is also the same as Proposition 23 of Book I of Elements.

It turns out that there is no need for an axiom on joining angles to
angles (i.e. an addition axiom for angles comparable to Axiom III-3).
This fact will be proven below.

Axiom III-6 is the Side-Angle-Side (SAS) congruence result that is
familiar from classical Euclidean geometry. It is Proposition 4 of Book I
of Elements. Euclid proved this result by an argument that was based on
“moving” or transforming points. As was mentioned above, this approach
can work if the notion of transformation is axiomatized. However, SAS
cannot be proven from the rest of Hilbert’s axioms. Hilbert, in his classic
work “Foundations of Geometry” [13] constructs a model of geometry
based on all of his axioms, except the SAS axiom. He shows that this
model is consistent, but the SAS result does not universally hold. This
shows that SAS is independent from the other axioms, and thus must be
stated as an axiom, if it is to be used.

We note that the congruence axioms are valid in all of our models
of Hyperbolic geometry, and are also valid in Elliptic geometry - with
a modified set of betweenness axioms used for definitions of segments,
angles and separation. We will review this modified set of congruence
axioms for Elliptic geometry in section 14.4

11.5.1 Triangle and Angle Congruence Results

Using the congruence axioms, we derive some basic facts about triangle
and angle congruence.

Definition 11.12. ∆ABC is called isosceles if it has two congruent
sides, i.e. AB ∼= AC. Segment BC is called the base of the triangle,
and the angles at B and C are called base angles.

Theorem 11.27. If ∆ABC is isosceles with AB ∼= AC then
∠CBA ∼= ∠ACB. That is, in an isosceles triangle, the base an-
gles are congruent.

The proof of this result, which is also the first part of Proposition 5 of
Book I of Euclid’s Elements, is a straight-forward application of SAS to
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triangles ∆ABC and ∆ACB. The second part of the fifth proposition
essentially deals with supplementary angles.

Definition 11.13. Two angles that have a vertex and side in com-
mon and whose separate sides form a line are called supplementary
angles.

It is clear that given any angle at least one supplementary angle
always exists. For, given ∠ABC the opposite ray to side −−→BC will exist
on the line through B and C. Let D be a point on this ray. Then, ∠ABD
will be supplementary to ∠ABC.

The following theorem can be used to prove the second part of Eu-
clid’s Proposition 5.

Theorem 11.28. Supplementary angles of congruent angles are
congruent.

Proof: Let ∠ABC ∼= ∠DEF . Let ∠ABG and ∠DEH be supplemen-
tary to ∠ABC and ∠DEF .

Since points A, C and G are arbitrarily given, we can assume by
axiom III-1 that points D, F and H are chosen such that AB ∼= DE,
BC ∼= EF , andBG ∼= EH. By SAS we then have that ∆ABC ∼= ∆DEF
and thus AC ∼= DF and ∠ACB ∼= ∠DFE. (Figure 11.8)
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Figure 11.8

Now, it is clear that G ∗ B ∗ C, for if this were not the case, then
either B ∗ G ∗ C, which implies that G is on −−→BC, or G ∗ C ∗ B, which
implies that C is on −−→BG. In either case we get a contradiction to the
definition of supplementary angles. The addition axiom (III-3) then says
that CG ∼= FH.

SAS then gives that ∆ACG ∼= ∆DFH. Then, ∠CGA ∼= ∠FHD
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and AG ∼= DH. Since GB ∼= HE we have again by SAS that ∆AGB ∼=
∆DHE. Thus, the two supplementary angles ∠ABG and ∠DEH are
congruent. 2 We note here that the definition of supplementary an-
gles, plus the preceding theorem, can serve as a replacement for Euclid’s
Proposition 13. This proposition deals with two distinct lines l and m
that cross at a point P . Proposition 13 states that the angles made by
a ray from P on one of the lines will create two angles that add to two
right angles. The obvious problem with this statement is that Euclid
never defined what is meant by “two right angles.” Our definition of sup-
plementary angles solves this problem, and Theorem 11.28 can be used
in place of Euclid’s Proposition 13 for proofs of basic results. For exam-
ple, it can be used to show that vertical angles are congruent, which is
is Proposition 15 of Book I of Elements.

Definition 11.14. Two angles with a common vertex and whose
sides form two lines are called vertical angles.

Theorem 11.29. Vertical angles are congruent to each other.

Proof: This is a direct result from the previous theorem and will be
left as an exercise. 2

Supplementary angles also provide a simple definition for right an-
gles.

Definition 11.15. An angle that is congruent to one of its supple-
mentary angles is called a right angle.

We finish this section with a few basic results on triangle congruence.

Theorem 11.30. (ASA for triangles) Given two triangles ∆ABC
and ∆DEF with ∠BAC ∼= ∠EDF and ∠ACB ∼= ∠DFE and
AC ∼= DF , then the two triangles are congruent (Figure 11.9).
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Proof: By axiom III-1 there is a unique point G on −−→DE with AB ∼=
DG. By SAS ∆ABC ∼= ∆DGF . Thus, ∠ACB ∼= ∠DFG. By transitivity
of angles ∠DFE ∼= ∠DFG. By axiom III-4 this implies that E and G
are both on the same ray −→EF . If E and G were not the same point then
the lines ←→EF and ←→DE would intersect in more than one point, which is
impossible. Thus, ∆ABC ∼= ∆DEF . 2

Note that this is part of Proposition 26 in Book I of Elements. This
theorem can be used to show the next theorem, which is the converse of
Theorem 11.27, and also Proposition 6 of Book I of Elements.

Theorem 11.31. If in ∆ABC we have ∠ABC ∼= ∠ACB then
AB ∼= AC and the triangle is isosceles.

Proof: Exercise. 2

11.5.2 Segment and Angle Ordering

The congruence axioms not only provide basic notions of equality for
segments and angles, they also provide the basis for the ordering of
these quantities.

To define an ordering for segments we will need the following two
theorems. The first is the segment subtraction theorem. (Compare this
to axiom III-3 above) The second guarantees that betweenness properties
are preserved under segment congruence.

Theorem 11.32. If A∗B∗C, D∗E∗F , AB ∼= DE, and AC ∼= DF ,
then BC ∼= EF (Figure 11.10).
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Proof: Assume that BC is not congruent to EF . We know from
axiom III-1 that there is a point G on −→EF such that BC ∼= EG. Also,
G 6= F because if these two points were equal, then BC ∼= EG and
EG ∼= EF would imply, by transitivity, that BC ∼= EF .

Now, AB ∼= DE. Thus, by axiom III-3 we have that AC ∼= DG. By
transitivity DF ∼= DG. But if F 6= G then DF 6= DG (see the note on
axiom III-1 above). 2

Theorem 11.33. Given AC ∼= DF then for any point B between
A and C there is a unique point E between D and F such that
AB ∼= DE.

Proof: By axiom III-1 there is a unique point E on −−→DF such that
AB ∼= DE. Now, if E = F then from AC ∼= DF and AB ∼= DF we
would have AC ∼= AB, contradicting axiom III-1, as B 6= C.

Suppose E is not between D and F , i.e. D ∗ F ∗E. On the opposite
ray to −→CA there is a unique point G with FE ∼= CG, by axiom III-1.
By the addition axiom we have that DE ∼= AG. We already have that
AB ∼= DE. Thus, AB ∼= AG. Now, A ∗ B ∗ C, and since G is on the
opposite ray to −→CA, then A∗C ∗G. By the four-point properties we have
that A ∗B ∗G, and thus AB cannot be congruent to AG (since B 6= G).
This contradicts AB ∼= AG.

Thus, the only possibility left is that E is between D and F . 2
We can now define an ordering on segments.
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Definition 11.16. We use the notation AB < CD (equivalently
CD > AB) to mean that there is a point E between C and D such
that AB ∼= CE.

Theorem 11.34. (Segment Order)

(i) One and only one of the following holds: AB < CD, AB ∼=
CD, or AB > CD.

(ii) If AB < CD and CD ∼= EF , then AB < EF .

(iii) If AB > CD and CD ∼= EF , then AB > EF .

(iv) If AB < CD and CD < EF , then AB < EF .

Proof: For the first statement, suppose AB < CD and AB ∼= CD.
Then, there is a point E between C and D such that AB ∼= CE. By
transitivity, CD ∼= CE with E 6= C. This contradicts axiom III-1. A
similar argument shows that AB > CD and AB ∼= CD is not possible.

There is only one case left for statement 1 of the theorem, that of
AB < CD and AB > CD. If this is the case then there is a point E
between C and D such that AB ∼= CE and also there is a point F
between A and B such that AF ∼= CD. Now, on the ray opposite −→BA
there is a unique point G with BG ∼= ED, by axiom III-1. We also note
that F and G are on opposite sides of B and thus cannot be equal.
By the addition axiom (III-3) we have that AG ∼= CD. By transitivity
AG ∼= AF , with both on ray −→AB. But, this contradicts axiom III-1 as if
AG ∼= AF then G = F .

For the second statement of the theorem, if AB < CD then there is
a point G between between C and D such that AB ∼= CG. Also, by the
previous theorem there is a unique point H between E and F such that
CG ∼= EH. By transitivity AB ∼= EH and thus by definition AB < EF .

A similar argument proves statement 3 of the theorem.
For the fourth statement, we know there is a point H between be-

tween E and F such that CD ∼= EH. Thus, AB < CD and CD ∼= EH.
By statement 2 of the theorem AB < EH. Thus, there is a point K
between E and H with AB ∼= EK. So, E ∗K ∗H and E ∗H ∗F . By the
four-point properties we have E ∗K ∗ F . By definition, AB < EF . 2
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In preceding sections, we discussed the dual nature of segments and
angles. Since we have just shown that segments can be ordered, it is not
surprising that an order can be defined for angles. We will explore angle
order in detail in the next project. In preparation for that work, we will
review the basic definitions and properties of angle order.

Definition 11.17. An angle ∠ABC is said to be less than an angle
∠DEF (denoted ∠ABC < ∠DEF ) if there exists a point G interior
to ∠DEF with ∠ABC ∼= ∠DEG. In this case, we also say that
∠DEF is greater than ∠ABC (Figure 11.11).
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Figure 11.11

Note that this definition does not say anything about angle measure.
We have not yet defined a way to associate angles with numbers.

We will classify types of angles based on their relationship to right
angles.

Definition 11.18. An angle that is less than a right angle is called
an acute angle. An angle greater than a right angle is called obtuse.

Theorem 11.35. If an angle is acute then its supplementary angle
is obtuse, and vice-versa.

Proof: Suppose angle ∠ABC is acute and let ∠ABD be a right angle,
with −−→BC between −→BA and −−→BD. Let E be a point on the opposite ray
to −→BA. We have by Theorem 11.26 that −−→BD is between −−→BC and −−→BE.
Thus, since ∠CBD is a right angle, we have that the supplementary
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angle ∠CBE is greater than a right angle and is therefore obtuse. The
other half of the proof is similar. 2

Exercise 11.5.1. Prove Theorem 11.27.

Exercise 11.5.2. Prove Theorem 11.29. Hint: Use the fact that there are
two supplementary angles to a given vertical angle.

Exercise 11.5.3. Suppose AB ∼= A′B′ and CD ∼= C ′D′. Show that AB <
CD if and only if A′B′ < C ′D′.

Exercise 11.5.4. Prove Theorem 11.31.

Exercise 11.5.5. Let ∆ABC be a triangle with all three angles congruent.
Show that the triangle must be equilateral.

Recall that Axiom III-3 is often called the “Segment Addition” ax-
iom. It would be nice to have an actual definition of what it means to
add two segments. Here is one attempt.

Definition 11.19. Let AB and
CD be two segments. Let E be a
point on←→AB with A∗B∗E (ax-
iom II-2). Let F be the unique
point (given by axiom III-1) on
ray −−→BE such that CD ∼= BF .

We then say that AF is the sum of AB and CD and we write
this as AF = AB + CD.

This is not a perfect definition, for it cannot show that segment
addition is commutative. To fix this, one has to define addition in terms
of equivalence classes of segments. This will be carried out in section ??.
With the above definition, we can still prove a few interesting results.

Exercise 11.5.6. Suppose AB ∼= A′B′ and CD ∼= C ′D′. Show that AB +
CD ∼= A′B′ + C ′D′.

Exercise 11.5.7. Write down a reasonable definition for the difference of
two segments AB − CD, assuming that AB > CD.

Exercise 11.5.8. Suppose AB ∼= CD + EF . Show that AB > CD.
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11.6 PROJECT 20 - ANGLE ORDER

In this project we will explore properties of the ordering of angles.
In this project our exploratory “canvas” will be the canvas of our minds.
Feel free to draw diagrams for each new idea, but be careful to make
your arguments based solely on the theorems and axioms of preceding
sections.

Review the theorems that we used to define segment order in the
last section. The properties of segment order depended greatly on the
“addition” and “subtraction” axioms and theorems for segments. To ex-
plore angle ordering we will need the following addition and subtraction
theorems for angles.

Theorem 11.36. (Angle Addition) Given −−→BG between −→BA and
−−→
BC, −−→EH between −−→ED and −→EF , ∠CBG ∼= ∠FEH, and ∠GBA ∼=
∠HED, then ∠ABC ∼= ∠DEF .

B

A

C

G

E

D

F

H

Figure 11.12

Proof: By the Crossbar Theorem we may assume that G is on AC.
(Figure 11.12) Using axiom III-1 we may also assume that D, F , and
H are points chosen on rays −−→ED, −→EF , and −−→EH so that AB ∼= ED,
CB ∼= FE, and GB ∼= HE.

Using the congruent angles given in the theorem, and the preced-
ing segment congruences, we have by SAS that ∆ABG ∼= ∆DEH and
∆GBC ∼= ∆HEF . Thus, ∠DHE ∼= ∠AGB and ∠FHE ∼= ∠CGB.



34 � Exploring Geometry - Web Chapters

Now, ∠AGB is supplementary to ∠CGB, and we know by Theo-
rem 11.28 that the supplement to ∠DHE must be congruent to ∠CGB.
We already have that ∠FHE ∼= ∠CGB. By axiom III-4 there is a unique
angle on the same side of −−→EH which is congruent to ∠CGB. Thus, the
supplement to ∠DHE must be ∠FHE and D,H, and F are collinear.

Since −−→EH is between −−→ED and −→EF , then by Theorem 11.18 we have
that D ∗H ∗ F . By the addition axiom (III-3) we have that AC ∼= DF .
We already know that the angles at C and F are congruent and that
sides BC and EF are congruent. Thus, ∆ABC ∼= ∆DEF by SAS, and
∠ABC ∼= ∠DEF . 2

Theorem 11.37. (Angle Subtraction) Given −−→BG between −→BA and
−−→
BC, −−→EH between −−→ED and −→EF , ∠CBG ∼= ∠FEH, and ∠ABC ∼=
∠DEF , then ∠GBA ∼= ∠HED.

Exercise 11.6.1. Prove this result by filling in the missing pieces (the places
marked why?) in the following proof.

Proof: We can assume that BC ∼= EF , AB ∼= DE, −−→BG intersects
AC at G, and −−→EH intersects DF at H. Then CA ∼= FD and ∠BCG ∼=
∠EFH. (Why?)

It follows that CG ∼= FH, BG ∼= EH, and ∠CGB ∼= ∠FHE.
(Why?) The supplements to these last two angles, ∠BGA and ∠EHD
are congruent by Theorem 11.28.

Then, AG ∼= DH (Why?) and it follows that ∠GBA ∼= ∠HED
(Why?). 2

Let’s review the definition of angle order.

Definition 11.20. ∠ABC < ∠DEF if there exists a point G in-
terior to ∠DEF with ∠ABC ∼= ∠DEG.

The next theorem states that angle order satisfies the usual proper-
ties. For brevity, we will denote an angle such as ∠BAC be ∠A, with
the points B and C assumed to be points on the sides.
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Theorem 11.38. (Angle Order)

(i) One and only one of the following holds: ∠A < ∠D, or ∠A ∼=
∠D, or ∠A > ∠D.

(ii) If ∠A < ∠D and ∠D ∼= ∠G, then ∠A < ∠G.

(iii) If ∠A > ∠D and ∠D ∼= ∠G, then ∠A > ∠G.

(iv) If ∠A < ∠D and ∠D < ∠G, then ∠A < ∠G.

Note the similarity between this theorem and the one for segment
ordering. In fact if we look at the addition, subtraction, and other con-
gruence results for segments and compare these with the corresponding
results for angles we see that the results are basically identical, except
for changing the word “segment” to “angle” and vice-versa.

Since segments and angles are dual notions, it should not be that
difficult to prove this theorem.

Exercise 11.6.2. Prove part (ii) of this result by filling in the missing pieces
(the places marked why?) in the following proof.

Proof: (Proof of part (ii). Proofs of other parts similarly use angle–
segment duality).

Let ∠A = ∠BAC, ∠D = ∠EDF , and ∠G = ∠HGI. Since ∠A <
∠D, then there is a point J interior to ∠EDF such that ∠BAC ∼=
∠EDJ . We can assume that AB ∼= DE and AC ∼= DJ . We can also
assume that J is on EF (Why?).

We have BC ∼= EJ and ∠ABC ∼= ∠DEJ (Why?). By the definition
of segment order we have BC < EF .

Since ∠D < ∠G, then there is a point K interior to ∠HGI such that
∠EDF ∼= ∠HGK. Then, EF < HI and ∠DEF ∼= ∠GHL (Why?).

So, we have BC < HI (Why?). Thus, there is a point L with H∗L∗I
such that BC ∼= HL. Then, since ∠ABC ∼= ∠DEJ(= ∠DEF ) and
∠DEF ∼= ∠GHL, we get by SAS congruence that ∆ABC ∼= DeltaGHL
and so ∠BAC ∼= ∠HGL. By definition, then ∠A < ∠G. 2

Let’s look at how angle ordering can be used to prove one of Euclid’s
axioms.
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Theorem 11.39. (Euclid’s Fourth Postulate) All right angles are
congruent.

Proof: Let ∠BAC and ∠FEG be two right angles. If D is opposite
of B on −→AB and H is opposite of F on −→EF , then ∠BAC ∼= ∠DAC and
∠FEG ∼= ∠HEG.

Suppose that ∠BAC is not congruent to ∠FEG. By angle ordering,
one of these angles is less than the other. We may assume that ∠FEG
is less than ∠BAC. Then, there is a ray −→AI between −→AB and −→AC such
that ∠BAI ∼= ∠FEG. (Figure 11.13)

H FD BA E

C G

IJ

Figure 11.13

Since supplements of congruent angles are congruent, (Theo-
rem 11.28) then ∠DAI ∼= ∠HEG. By angle transitivity ∠DAI ∼=
∠FEG.

Since ∠BAI ∼= ∠FEG and ∠FEG < ∠BAC, then by the previous
theorem we have that ∠BAI < ∠BAC. Likewise, ∠BAI < ∠DAC.
Thus, there is a ray −→AJ between −−→AD and −→AC such that ∠BAI ∼= ∠DAJ .

We know by the definition of ordering that ∠DAC > ∠DAJ . Now,
since I is in the interior of ∠BAC and B ∗ A ∗ D then by part 3 of
Theorem 11.20 we know that C will be in the interior of ∠DAI. Thus,−→
AC is between −→AI and −−→AD and ∠DAC < ∠DAI.

Exercise 11.6.3. Put all of the preceding results together to create a string
of angle inequalities and congruences to show that ∠DAI > ∠DAI, and thus
reach a contradiction to one of the axioms (which one?)

Since we have reached a contradiction, then our original assumption,
that ∠BAC is not congruent to ∠FEG, must be false and we have
proved that ∠BAC is congruent to ∠FEG. 2
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Angle ordering can be used to prove results dealing with the construction
of triangles with three given lengths.

Theorem 11.40. If two points C and D are on opposite sides of
a line ←→AB and if AC ∼= AD and BC ∼= BD then ∠ABC ∼= ∠ABD
and ∠BAC ∼= ∠BAD, and ∆ABC ∼= ∆ABD.

Proof: We may assume that A 6= B.

Suppose B is on CD. Then
∆ADC is an isosceles triangle.
Thus, ∠ACB ∼= ∠ADB. By SAS
we have that ∆ABC ∼= ∆ABD,
and thus ∠ABC ∼= ∠ABD and
∠BAC ∼= ∠BAD. The case where
A is on CD can be handled simi-
larly.

A B

C

D

If both A and B are not on
CD then we have two isosceles tri-
angles ∆BDC and ∆ADC. Since
C and D are on opposite sides
of ←→AB, then CD intersects ←→AB
at some point E. We know that
B ∗A ∗E, A ∗E ∗B, or A ∗B ∗E.
It is clear that A and B are inter-
changeable in terms of generality
of the proof, so we have just two
possibilities: A∗E∗B or A∗B∗E.

A BE

A B E

C

C

D

D

Exercise 11.6.4. Use angle addition (and subtraction) to show that
∠ACB ∼= ∠ADB in both cases. Then, show that ∆ACB ∼= ∆ADB

2
The following theorem is essentially Proposition 7 of Book I of Ele-

ments.
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Theorem 11.41. With the same assumptions as the previous the-
orem, but with C and D on the same side of ←→AB, then it must be
the case that D = C. (Informally, this says that there is only one
way to construct a triangle with three given side lengths.)

Proof:
By axiom III-4 there is a unique
ray −→AE on the other side of ←→AB
from C and D with ∠CAB ∼=
∠BAE. We can also assume that
CA ∼= EA. Then, by SAS we have
that ∆ABC ∼= ∆ABE.

A B

C

E

D

Then, BE ∼= BC and by the previous theorem (using the transitivity of
segment congruence) we have that ∆ABD ∼= ∆ABE and thus ∆ABC ∼=
∆ABD. But, by axiom III-4 this implies that D must be on −→AC and
also on −−→BC. Since these rays already intersect at C then D = C. 2

We can use the preceding results to prove the following classical
triangle congruence, which is also Proposition 8 of Book I of Elements.

Theorem 11.42. (SSS) If in two triangles ∆ABC and ∆DEF
each pair of corresponding sides is congruent then so are the trian-
gles.

Exercise 11.6.5. Prove SSS. Here is an outline of the proof for you to
complete: At point A on AB, we can construct an angle ∠BAF ′ with F ′ on
the other side of ←→AB from C with ∠BAF ′ ∼= ∠EDF (Why?). We can assume
AF ′ ∼= DF (Why?). Then, ∆ABF ′ ∼= ∆DEF (Why?). Also, ∆ABF ′ ∼=
∆ABC (Why?).

Project Report

In this project we have explored the notion of angle order. In your project
report provide clear and complete solutions to the exercises. In your
conclusion discuss briefly the idea of duality. Explain in your own words
what this concept means and why it is such a desirable feature, if present,
in an axiomatic system.
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11.7 CONSTRUCTIONS
The astute reader might be keeping score on how many of Euclid’s Propo-
sitions have now been put on a solid footing using Hilbert’s Incidence,
Betweenness, and Congruence axioms. Propositions 2-8, 13, 15, 23, and
half of 26 (ASA) have all been verified. Proposition 1 —the construc-
tion of equilateral triangles —is still open as it implicitly assumes the
intersection of two circles is a continuous process. We will need a new
axiom, Dedekind’s axiom, to prove this result. Dedekind’s axiom will be
covered later in this chapter.

11.7.1 Constructions

There are several other construction Propositions in Book I of Euclid’s
Elements. For example, Proposition 9 states that any angle can be bi-
sected. Euclid’s proof of this result uses Proposition 1, and thus implic-
itly assumes the circle intersection property described above. There is
another proof of this result that relies only on the existence of isosce-
les triangles. This approach to Euclid’s constructions can be found in
Hartshorne’s Geometry: Euclid and Beyond [11][Chapter 10].

Theorem 11.43. Given a segment AB there exists an isosceles
triangle with base AB.

Proof: By Incidence axiom I-3 we know there is a point C not on AB. If
the angles at A and B are congruent, then the proof is done. So, suppose
the angles at A and B are not congruent.

Then, by Theorem 11.38 we know
that one of these angles is less
than the other. Suppose the angle
at A is less than the angle at B.
Then, there is a ray −−→BD interior
to ∠CBA such than ∠BAD ∼=
∠DBA.

By the Crossbar Theorem (Theorem 11.21), −−→BD must intersect AC at
a point E. Then, the base angles of ∆ABE are congruent, and so by
Theorem 11.31 we have that the triangle is isosceles. We also note for
future reference that the point E is interior to AC. 2
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In order to show the validity of the construction of an angle bisector,
we will also need to use the following result about supplementary angles.

Theorem 11.44. Suppose we have two supplementary angles
∠BAC and ∠CAD on line ←→BD. Also, suppose that ∠BAC ∼=
∠B′A′C ′ and ∠CAD ∼= ∠C ′A′D′, with D′ and B′ on opposite sides
of
←−→
A′C ′. Then, angles ∠B′A′C ′ and ∠C ′A′D′ are supplementary.

Proof: We have to show that rays
−−→
A′D′ and

−−→
A′B′ are both on line←−→

A′B′.

Let E′ be a point on the ray oppo-
site to

−−→
A′B′. Then, D′ and E′ are

on the same side of
←−→
A′C ′. Suppose

D′ is not on
−−→
A′E′. Since ∠C ′A′D′

is well-defined, then D′ cannot
be on

−−→
A′C ′. By our assumption

about D′ it cannot be on
−−→
A′E′. If

D′ is on the same side of
←−→
A′B′ as

C ′, then D′ is interior to ∠C ′A′E′
and ∠C ′A′D′ < ∠C ′A′E′.

On the other hand, suppose
D′ is on the opposite side of

←−→
A′B′

as C ′. Let F ′ be on the oppo-
site ray to

−−→
A′C ′. Then

−−→
A′D′ is be-

tween
−−→
A′F ′ and

−−→
A′E′. By Theo-

rem 11.26 we have that
−−→
A′E′ is

between
−−→
A′D′ and

−−→
A′C ′. Thus,

∠C ′A′E′ < ∠C ′A′D′.

Now, by Theorem 11.28, we have that supplementary angles of congru-
ent angles are congruent. Thus, ∠C ′A′E′ ∼= ∠CAD. We are given that
∠CAD ∼= ∠C ′A′D′. By Axiom III-5 we have that ∠C ′A′E′ ∼= ∠C ′A′D′.
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But this contradicts Theorem 11.38, as we cannot have that ∠C ′A′E′ ∼=
∠C ′A′D′ and either ∠C ′A′E′ < ∠C ′A′D′ or ∠C ′A′E′ > ∠C ′A′D′. The
only conclusion to make is that our assumption about D′ is incorrect.
That is, we must have that D′ is on

−−→
A′E′, and the proof is complete.

2 This theorem is essentially a replacement for Euclid’s Proposition 14.
The statement of this proposition is a bit strange. It specifies when two
rays emanating from a common point P must be collinear. Euclid states
that they are collinear if another ray from P makes two angles that add
to two right angles. The notion of “making two right angles” is not well-
defined. In practice, the preceding theorem can serve as a replacement,
as it does in the proof of the angle bisector theorem.

Theorem 11.45. (Angle Bisection) Given angle ∠BAC we can
find a ray −−→AD between rays −→AB and −→AC such that ∠BAD ∼=
∠DAC.

Proof:

By using properties of between-
ness and extension of segments,
we can assume that AC > AB.
On AC we can find C ′ such that
AB ∼= AC ′ ( Axiom III-1).

Following the proof of Theorem 11.43, we can construct an isosceles
triangle ∆BC ′D on BC ′, using point C. From the construction, we know
that D is either on CC ′ or BC.

Suppose that D is on CC ′.
∠BC ′D is supplementary to ∠AC ′B.
Since ∆BC ′D is isosceles, then
by Theorem 11.27 we know that
∠BC ′D ∼= ∠DBC ′.

Let E be a point between A and B. Then, A and E are on the
same side of

←−→
BC ′. Also, A and D are on opposite sides of

←−→
BC ′. then,

by Theorem 11.12 we have that D and E are on opposite sides of
←−→
BC ′.

Also, since ∆ABC ′ is isosceles, then ∠C ′BE ∼= ∠AC ′B.
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So, we have that ∠BC ′D and ∠AC ′B are supplementary, ∠BC ′D ∼=
∠DBC ′, ∠AC ′B ∼= ∠C ′BE, and D and E are on opposite sides of

←−→
BC ′.

By the previous theorem we have that ∠C ′BA and ∠DBC ′ must be
supplementary. But, this implies that D is on ←→AB which contradicts
Incidence axiom I-2.

Now, since D cannot be on CC ′,
then it must be on BC, and so−−→
AD is interior to ∠BAC. Us-
ing SSS congruence on triangles
∆DBA and ∆DC ′A we have that
∠BAD ∼= ∠DAC ′.

2
Angle bisection is Euclid’s Proposition 9. Proposition 10 is the con-

struction of the midpoint of a segment.

Theorem 11.46. Given a segment AB there is a point C with
A ∗ C ∗B and AC ∼= CB.

Proof: The proof of this result can be accomplished by using an isosceles
triangle construction and is left as an exercise. 2

Propositions 11 and 12 of Euclid’s Elements deal with the construc-
tion of perpendiculars.

Definition 11.21. Two lines that intersect are perpendicular if
one of the angles made at the intersection is a right angle.

Theorem 11.47. (Proposition 11) Given a line l and a point P on
l, there exists a line m through P that is perpendicular to l.

Proof: On l one can show that there are points Q and R on opposite
sides of P such that PQ ∼= PR. It is left as an exercise to prove that
this can be done, and then to use an isosceles triangle construction to
finish the proof of the result. 2
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Theorem 11.48. (Proposition 12) Given a line l and a point P
not on l, there exists a line m through P that is perpendicular to l.

Proof: Let A and B be two distinct points on l (Incidence axiom I-3).
Consider ∠BAP . By Congruence axiom III-4 we can find a point Q on
the other side of l from P such that ∠BAP ∼= ∠QAB. (Figure11.14)

Figure 11.14

We can assume that AP ∼= AQ ( by axiom III-1). Since P and Q are
on opposite sides of l, then PQ intersects l at some point C.

If C 6= A then A, C, and P form a triangle. By SAS congruence,
∆ACQ ∼= ∆ACP and thus the two angles at C are congruent. Since
these two angles are supplementary, the angle at C is a right angle.

If C = A, then the angles at A = C are congruent and supplemen-
tary. Again, the angle at C will be a right angle. 2

Exercise 11.7.1. Prove that segments can be bisected - Theorem 11.46.

Exercise 11.7.2. Finish the proof of Theorem 11.47.

Exercise 11.7.3. Prove that a segment AB has only one midpoint. [Hint:
Suppose it had two. Use betweenness and segment ordering to get a contradic-
tion.]

Exercise 11.7.4. Prove that an angle has a unique bisector. [Hint: Use the
preceding exercise.]

Exercise 11.7.5. Review the construction of the perpendicular bisector of
a segment from Chapter 4. (Section 4.1). Show that this construction is valid
and show that there is only one perpendicular bisector of a segment. [Hint: Use
uniqueness of midpoints. Then, prove by contradiction using angle ordering.]

Exercise 11.7.6. Define Line-Circle Continuity as follows: Let c be a circle
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with center O and radius AB. If a line l passes through an interior point P
of the circle, then it intersects the circle in a point. Assuming this property
is true, show that the line intersects the circle at another point. [Hint: There
are two cases —the line passes through O or it does not. If it does not, drop
a perpendicular from the center of the circle to the line.]

11.8 SEGMENT MEASURE
We have now covered many of the basic results of geometry that are
independent of parallel properties. Euclid’s Propositions 2-15, 23, and
half of 26 (ASA) have now been put on a solid footing using Hilbert’s
Incidence, Betweenness, and Congruence axioms.

In our development to this point, we have been careful to avoid using
one of the most powerful tools of modern geometry - the coordinate
based measure of segments and angles. The axiomatic development of a
geometry robust enough to handle these analytic concepts requires the
notion of continuity. At the most basic level we want to guarantee that
lines and segments have no “holes”. That is, given a line and a point
specified as the origin, we want the ability to reference a point that is 3
units to the right of the origin, or π units to the left of the origin.

An axiomatic system for geometry that is based solely on the axioms
of incidence, betweenness, and congruence is not sufficient to ensure
this idea of continuity. In this section, we will employ a new idea, the
notion of Dedekind cuts, to ensure the continuous distribution of lengths
on lines. The existence of Dedekind cuts will be guaranteed by a new
axiom, Dedekind’s axiom, from which we can derive all of the necessary
continuity principles.

The material in this section is perhaps the most technically challeng-
ing of all the topics we will discuss in this chapter. However, this material
is perhaps the most intellectually fascinating of the topics we will cover.
The question of continuity and the construction of real number mea-
sures for segments and angles are among the deepest foundational areas
of geometry. We begin our discussion with the statement of Dedekind’s
axiom.

• IV-1 (Dedekind’s Axiom) If the points on a line l are
partitioned into two nonempty subsets Σ1 and Σ2 (i.e.
l = Σ1∪Σ2) such that no point of Σ1 is between two points
of Σ2 and vice-versa, then there is a unique point O lying
on l such that P1 ∗O ∗P2 if and only if one of P1 or P2 is in
Σ1, the other is in Σ2, and O 6= P1 or P2.
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Dedekind’s axiom basically says that any splitting of a line into points
that are on distinct opposite sides must be accomplished by a unique
point O acting as the separator. The pair of subsets described in the
axiom is called a Dedekind cut of the line.

Dedekind says of this axiom that

“I think I shall not err in assuming that every one will at
once grant the truth of this statement; the majority of my
readers will be very much disappointed in learning that by
this commonplace remark the secret of continuity is revealed.
To this I may say that I am glad if every one finds the above
principle so obvious and so in harmony with his own ideas
of a line; for I am utterly unable to adduce any proof of its
correctness, nor has any one the power. The assumption of
this property of the line is nothing less than an axiom by
which we attribute to the line its continuity.”

Dedekind’s axiom certainly does not seem “obvious” at first glance,
but upon review it does seem self-evident that two disjoint sets of points
on a line that are split into two sides must have a point separating them.

We will use Dedekind’s axiom in a variety of ways. Our first applica-
tion will be in limiting the extremes of “size” of segments. We will need
the following notion.

Definition 11.22. We say that segment CD is laid off n times
(n a positive integer) on a ray −→AB if there is a sequence of points
A0 = A,A1, A2, . . . , An on −→AB with Ak−1Ak ∼= CD for k = 1 . . . n
and A∗Ak ∗Ak+1 for k = 1 . . . n−1. We also write nCD for laying
off CD n times.

Recall that the notation A ∗B ∗C is used to designate that point B
lies between points A and C.

Note that a segment CD can always be laid off n times on a ray −→AB.
This is a simple consequence of congruence axiom III-1 guaranteeing that
we can always continue “copying” CD along the ray opposite −−−−−→AkAk−1
at each step of the construction.

The following lemma verifies our intuition as to the ordering of a set
of points laid off on a segment.
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Lemma 11.49. Let segment CD be laid off n times on −→AB. Let
{Ak}nk=0 be the corresponding sequence of points on −→AB. Then, A ∗
Aj ∗ Ak for all j = 1 . . . n− 1, k = 2 . . . n, with j < k.

Proof: Exercise. 2
Dedekind’s axiom implies Archimedes’ axiom which guarantees that

no point on a line is infinitely far or infinitely close to a given point.

Theorem 11.50. (Archimedes’s axiom) Given AB and CD, there
is a positive integer n such that if we lay off CD n times on −→AB,
starting from A, then a point An is reached where A ∗B ∗ An.

Proof: Suppose that no such n exists, i.e. for all n > 1 the point An
reached by laying off CD n times is not to the “right” of point B. Then,
for all n, the point An 6= B, for if An = B for some n, then we could lay
off the segment once more and get a point to the right of B. Thus, we
assume that for all n we have A ∗An ∗B. We will define a Dedekind cut
for the line through A,B as follows.

Let Σ1 be the set of points P on ←→AB such that A ∗An ∗ P for all n.
Then, B is in Σ1 and Σ1 is non-empty. Let Σ2 be the set of remaining
points on←→AB. For all n, An is in Σ2 and Σ2 is non-empty. Also note that
A is in Σ2.

We now show that the betweenness condition in Dedekind’s axiom
is satisfied. Let Q1, R1 be two points of Σ1 and Q2, R2 be points of Σ2.
Suppose that Q2 ∗Q1 ∗R2. Since Q2 and R2 are not in Σ1, then for some
n1, we must have A ∗Q2 ∗ An1 , and for some n2, we have A ∗ R2 ∗ An2 .
If n1 = n2 we can use the fact that A ∗ An2 ∗ An2+1, and four-point
betweenness, to show that A ∗ R2 ∗ An2+1. Thus, we can assume that
n1 6= n2, and without loss of generality, that n2 > n1. By the previous
lemma we know that A∗An1 ∗An2 . Since A∗Q2∗An1 , then A∗Q2∗An2 by
4-point betweenness. Using A∗Q2∗An2 , A∗R2∗An2 , and A∗An2 ∗Q1 we
have by 4-point betweenness that A ∗Q2 ∗Q1 and A ∗R2 ∗Q1. Thus, Q2
and R2 are on the same side of Q1. But, this contradicts the assumption
that Q2 ∗Q1 ∗R2, and so a point of Σ1 cannot be between two points of
Σ2.

Suppose on the other hand that Q1 ∗Q2 ∗R1. A similar argument to
the previous one will show that Q1 and R1 are on the same side of Q2,
which is again a contradiction.
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Thus, the conditions for Dedekind’s Axiom are satisfied and there
must be a unique point O with the properties stated in the axiom. If
O = An for some n, then A ∗ O ∗ An+1 would imply by the axiom that
An+1 is in Σ1, which is impossible. If O 6= An, but A ∗O ∗Ak for some k
then O would be between two points of Σ2, which would also contradict
Dedekind’s axiom. Thus, O must be in Σ1.

Now, O is on the same side of A as An (for any n), for if O was on
the other side for some n, then O ∗ A ∗ An, which contradicts the fact
that O is in Σ1. Also, AO > CD, for if AO < CD, then A ∗O ∗A1, and
O would be in Σ2.

Now, we will show that the existence of point O leads to a con-
tradiction. First, there is a point X with A ∗ X ∗ O and XO ∼= CD,
(Congruence axiom III-1). Also, X 6= An for any n since, if it did match
one of the An, then O = An+1, and O would be in Σ2, which is a con-
tradiction. For P in Σ1, we have A ∗ O ∗ P . Since A ∗ X ∗ O, then by
4-point betweenness we have X ∗ O ∗ P . By Dedekind’s axiom X must
be in Σ2. Thus, there is an n > 0 such that A ∗X ∗An. Since A ∗An ∗O
we have by 4-point betweenness that X ∗An ∗O. By the previous lemma
A∗An ∗An+2. Thus, by 4-point betweenness we have A∗X ∗An+2. Since
A ∗ An+2 ∗O we have again by 4-point betweenness that X ∗ An+2 ∗O.
By segment ordering we have XO > XAn+2. Now, since A ∗ X ∗ An
and A ∗An ∗An+2 then by 4-point betweenness we have X ∗An ∗An+2.
Thus, XAn+2 > AnAn+2. By transitivity of segment ordering we have
XO > AnAn+2. But, AnAn+2 > AnAn+1 and AnAn+1 ∼= CD ∼= XO.
Thus, XO > XO. Since a segment cannot be larger than itself we have
a contradiction. This completes the proof. 2

Note that this theorem implies that no point B can be infinitely far
from a fixed point A, as we can lay off CD a finite number of times to
exceed B. That is, if we consider CD as a unit length we can find n > 0
such that nCD > AB. Conversely, if we consider AB as a unit length
we have AB < nCD (or 1

nAB < CD) and thus there is no infinitely
small length.

The following development allows us to talk about the “limit point”
of a nested sequence of intervals.

Definition 11.23. A sequence of segments AnBn (n = 1, 2, 3 . . .) is
called a nested sequence if for all m and n we have An ∗An+1 ∗Bm
and An ∗Bm+1 ∗Bm.
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Theorem 11.51. Let AnBn be a nested sequence. Then AnBn ⊂
AmBm for all n > m. Also, Am ∗Ar ∗Bn and An ∗Br ∗Bm for any
n,m with r > m.

Proof: Let C be an element of Am+1Bm+1. If C = Am+1, then Am ∗
C∗Bm by the definition of a nested sequence and C is an interior element
of AmBm. If C = Bm+1, then Am ∗ C ∗ Bm by the definition and again
C is an interior element of AmBm.

If C 6= Am+1, we can assume that Am+1 ∗ C ∗ Bm+1. We are given
that Am+1∗Bm+1∗Bm. By 4-point betweenness, we have Am+1∗C ∗Bm,
or Bm ∗ C ∗ Am+1. Again, it is given that Bm ∗ Am+1 ∗ Am. By 4-point
betweenness, we have Bm∗C∗Am, and C is an interior element of AmBm.

So, Am+1Bm+1 ⊂ AmBm. Likewise, Am+2Bm+2 ⊂ Am+1Bm+1, and
so Am+2Bm+2 ⊂ AmBm. Similarly, Am+kBm+k ⊂ AmBm. for all k > 1.
If we let n = m+ k the proof of the first part of the theorem is finished.

For the second part of the theorem we note that Am ∗Am+1 ∗Bn and
Am+1 ∗Am+2 ∗Bn are true by definition of a nested sequence. Reversing
these, we get Bn∗Am+2∗Am+1 and Bn∗Am+1∗Am. By 4-point between-
ness, we then haveBn∗Am+2∗Am. Again, by definition,Bn∗Am+3∗Am+2.
Since Bn∗Am+2∗Am we get by 4-point betweenness that Bn∗Am+3∗Am.
Continuing in this fashion, we get that Bn ∗ Ar ∗ Am, or Am ∗ Ar ∗ Bn,
for r > m. A similar argument can be used to show An ∗ Br ∗ Bm for
r > m. 2

Theorem 11.52. (Cantor’s Axiom) Suppose that there is an infi-
nite nested sequence of segments AnBn (n > 0) on a line l. Suppose
there does not exist a segment which is less than all of the segments
AnBn. Then, there exists a unique point O belonging to all the seg-
ments AnBn.

Proof: We define a Dedekind cut for the line l as follows. Let Σ1
consist of all of the points Bn along with any other point X with the
property that A1∗Bn∗X for some n. Intuitively, this cut consists of all of
the right endpoints of the segments in the sequence, along with all of the
points to the “right” of these endpoints. Let Σ2 consist of all remaining
points on the line. We claim that Σ2 contains all of the points Am. By
the definition of a nested sequence we know that Am 6= Bn for any m,n.
Suppose A1 ∗ Bn ∗ Am for some n. Clearly, m > 1. But, A1 ∗ Bn ∗ Am
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contradicts the second claim of the previous theorem, which says that
Am ∗Ar ∗Bn for any n,m with r > m. In particular, the theorem would
imply that A1 ∗ Am ∗Bn. Thus, Σ1 and Σ2 are non-empty sets.

To show that the betweenness property of Dedekind’s axiom is sat-
isfied, we first point out that Σ1 is entirely contained in −−−→A1B1 and thus
we need not consider points in Σ2 that lie on the ray opposite to −−−→A1B1.
This is because the theorems of section 11.2 show that no point in a
ray can be between points on the opposite ray, and vice-versa. Thus, it
suffices to consider points W,X, Y, Z with W,X in Σ1, Y, Z in Σ2, and
Y, Z on −−−→A1B1.

We first show that W ∗ Y ∗X is impossible. We know that Y must
satisfy Y ∗ A1 ∗ Bn or A1 ∗ Y ∗ Bn for all n. Since we assumed Y is not
on the ray opposite to −−−→A1B1, we must have A1 ∗ Y ∗ Bn for all n. Since
X is in Σ1 we have A1 ∗ Bn ∗ X for some n. Since A1 ∗ Y ∗ Bn and
A1 ∗Bn ∗X, then by 4-point betweenness, we get A1 ∗Y ∗X. (Note: We
would likewise have A1 ∗Y ∗W .) Now, if W ∗Y ∗X then, without loss of
generality, we can assume that A1∗X ∗W (orW ∗X ∗A1). Using 4-point
betweenness, we get that Y ∗X ∗A1, or A1 ∗X ∗Y . This contradicts the
fact that A1 ∗ Y ∗X and thus Y cannot be between W and X.

On the other hand suppose that Y ∗ W ∗ Z. We can assume that
A1 ∗Z ∗ Y (or Y ∗Z ∗A1). By 4-point betweenness, we get Y ∗W ∗A1,
or A1 ∗W ∗ Y , which contradicts the fact that A1 ∗ Y ∗W .

Thus, we have constructed a Dedekind cut for l and there must be a
unique point O separating Σ1 and Σ2. We need to show that O belongs
to all of the segments AnBn. This is clear since if An is in Σ2 and Bn is
in Σ1, then by Dedekind’s axiom we have An ∗O ∗Bn.

We are basically done now except to show that O is unique. Suppose
there is a second point O′ belonging to all of the segments AnBn. Then,
OO′ is contained in all AnBn. (This can be proven using a betweenness
argument and is left as an exercise). Let O′′ be the midpoint of OO′.
Then, OO′′ is less than any of the segments AnBn which contradicts a
hypothesis of the theorem. 2

We will now develop a way of measuring the length of segments. This
development we will make extensive use of the “arithmetic” of segments.
We explored the notion of “adding” segments in Definition 11.19 and the
exercises following that definition. The following definition will be con-
sistent with this earlier definition, but will make the notion of segment
addition more precise.
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Definition 11.24. Given segments a = AA′, b = BB′, and c =
CC ′, we say that c is the sum of a and b, denoted c = a+ b, if there
exists a point X with C ∗X ∗ C ′, AA′ ∼= CX, and BB′ ∼= XC ′. If
we refer to a + b, then it is implicitly assumed that there exists a
segment c such that c = a+ b.

By the properties of segment ordering and addition, we have that
all possible choices of c are congruent in this definition. Thus, a + b is
well-defined up to congruence, and if we say c = a+ b, then the equality
is defined up to congruence. That is, in this arithmetic, a+ b = c means
a+ b ∼= c.

Theorem 11.53. Given segments a, b, c, d we have

(i) a+ b = b+ a

(ii) (a+ b) + c = a+ (b+ c)

(iii) if a < b then a+ c < b+ c

(iv) if a < b and c < d then a+ c < b+ d

(v) if a = b and c = d then a+ c = b+ d

Proof:Part (i) is clear from the definition.
For part (ii) let a+ b = PQ. Then there is a point R with P ∗R ∗Q

and PR ∼= a and RQ ∼= b. Let S be a point with P ∗Q ∗ S and QS ∼= c.
Then, (a+ b) + c is congruent to PS by definition. It can be shown that
a+ (b+ c) is also congruent to PS (exercise). For part (iii) let a = AA′

and b = BB′. then, if a < b, there must be a point P with B ∗P ∗B′ and
AA′ ∼= BP . Let d = PB′. Then, b = a+d. So, b+c = a+d+c = a+c+d.
Thus, since (a + c) is less than (a + c) + d, by the definition above, we
have that a+ c < b+ c.

For part (iv) we have from part (iii) that a+ c < b+ c. Also, c+ b <
d+ b, or equivalently, b+ c < b+ d. Thus, by segment ordering we have
a+ c < b+ d.

Part (v) is a simple consequence of the congruence properties of
segments. 2
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Definition 11.25. The product of a positive integer n with a seg-
ment a is defined as follows: For n = 1, let 1a = a. For n > 1
define na = (n− 1)a+ a. This defines the product inductively.

We will be particularly interested in the arithmetic of dyadic seg-
ments. These are defined in terms of dyadic numbers, numbers of the
form m

2n , with m,n integers and m > 1, n ≥ 0.

Definition 11.26. Given a segment a = AB, construct a sequence
of segments {sn} for n > 0 as follows: For n = 0 let s0 = AB. For
n = 1 let M1 be the midpoint of AB and s1 = AM1. For n = 2 let
M2 be the midpoint of AM1 and s2 = AM2. Continue this pattern
by letting Mn be the midpoint of AMn−1 and sn = AMn. Note that
2nsn = a. Define 1

2n a to be the segment sn. Define
m

2n a = m
1
2n a,

for m a positive integer. Then, m2n a will be called a dyadic segment.

Note that it follows immediately from the definition that 1
2k ( 1

2l a) =
1

2l+k a. Also, 2k 1
2l+k a = 2k 1

2k ( 1
2l a) = 1

2l a. The following result provides
an arithmetic of dyadic segments.

Theorem 11.54. Let w and v be dyadic numbers and a and b
segments. Then,

(i) wa = wb iff a = b.

(ii) w(a+ b) = wa+ wb

(iii) (w + v)a = wa+ va

(iv) if a < b then wa < wb

(v) if w < v then wa < va

(vi) if wa < wb then a < b

(vii) if wa < va then w < v
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Proof: If w and v are positive integers, then the theorem is simply a
corollary of Theorem 11.53.

Since m

2n a = m
1
2n a, all we have to show is that the theorem holds

for w = 1
2k and v = 1

2l .

For part (i) of the theorem, note that if 1
2k a = 1

2k b, then
1
2k a+ 1

2k a =
1
2k b + 1

2k b, by the previous theorem, and so 2 1
2k a = 2 1

2k b. Continuing

to add successively, we get that 2k 1
2k a = 2k 1

2k b. But, 2k 1
2k a = a, and

likewise for b, so a = b.
On the other hand, if a = b, then by the definition of dyadic segments,

we have wa = wb.
For part (ii) note that 2k(w(a + b)) = 2k 1

2k (a + b) = (a + b). Also,
2k(wa+ wb) = (wa+ wb) + (wa+ wb) + · · · (wa+ wb) (2k times). So,

2k(wa+ wb) = (wa+ wa+ · · ·+ wa) + (wb+ wb+ · · ·+ wb)
= (2kwa) + (2kwb)
= a+ b

Thus, 2k(w(a+b)) = 2k(wa+wb) and by part (i) we have w(a+b) =
wa+ wb.

Part (iii) is left as an exercise.
For part (iv) if a < b, then either wa < wb, or wa = wb, or wa > wb.

By part (i) wa = wb is impossible. Suppose wa > wb. Then, by the
previous theorem, we have wa+wa > wb+wa and wa+wb > wb+wb.
By segment ordering we get 2wa > 2wb. Likewise, mwa > mwb for
m > 0. In particular, 2kwa > 2kwb. But, 2kwa = a and 2kwb = b. Thus,
a > b, which is impossible. So, wa < wb.

Part (v) is left as an exercise.
Parts (vi) and (vii) follow immediately from (iv) and (v) and the

definition of dyadic segments. 2
We are now in a position to define segment measure. The measure of

a segment will be a function that attaches to the segment a real number
which will serve as the segment’s length. This will allow us to develop
our usual notions of analytic geometry.

The development of segment measure necessarily requires an under-
standing of the axiomatic construction of the real numbers. This con-
struction starts with the natural (or counting) numbers, which are built
using the Peano Axioms. A description of the Peano Axioms is given
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prior to exercise 1.4.9. The natural numbers are then extended to the
set of all integers, and the integers are extended to the rationals by look-
ing at equivalence classes of pairs of integers. The task of completing this
number system to include all reals can be done in several ways, including
Cauchy sequences and the use of Dedekind cuts.

A Dedekind cut is a subdivision of the set of all rational numbers
into two nonempty, disjoint subsets, say L and U , such that no element
of L is between two elements of U and vice-versa. We can think of L as
a lower interval of the cut and U as an upper interval.

For example, we could let L be the set of rationals whose square is
less than 2, and U be the remaining set of rationals. Then, this cut would
essentially represent what we consider to be

√
2. In this axiomatic sys-

tem, the real numbers would consist of all possible Dedekind cuts. With
this basic definition, one then has to prove that addition, multiplication,
etc, of Dedekind cuts works as we would expect them to. For a complete
review of the axiomatic basis for the reals, one can consult any solid real
analysis text. For example, the text by Landau [16] does a very thorough
job.

It is clear, then, that this axiomatic development of the reals exactly
mirrors our use of Dedekind’s Axiom in the development to this point
of segment arithmetic. It is not surprising that we can use this parallel
structure to define segment measure.

Theorem 11.55. Given a segment u, which we will call a unit
segment, there is a unique way of assigning a positive real number,
called the length and denoted by µ(a), to any segment a, such that
for all segments a and b we have

(i) µ(a) > 0 for all a.

(ii) a ∼= b iff µ(a) = µ(b).

(iii) a < b iff µ(a) < µ(b).

(iv) µ(a+ b) = µ(a) + µ(b).

(v) µ(u) = 1.

Proof: Let D denote the set of all dyadic numbers and let a be any
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segment. We will split D into two sets Da1 and Da2 as follows:

w ∈ Da1 if wu < a

w ∈ Da2 if wu ≥ a

These two sets are clearly disjoint, and by the Archimedean axiom,
the two sets must be non-empty. Also, no dyadic number in one of the
sets can be between two elements of the other. For suppose that w2 of
Da2 is between w1 and v1 of Da1 . Then, we can assume w1 < w2 < v1.
The previous theorem implies that w1u < w2u < v1u, but this violates
the definition of Da1 and Da2 . Likewise, no element of Da1 can be between
two elements of Da2 .

This division of the set of dyadic numbers is thus a Dedekind cut
of the set of dyadic numbers (and thus the positive rationals) and must
represent a positive real number. Call this number µa. Define the length
of a, denoted µ(a), to be this number, i.e. µ(a) = µa.

We now have a well-defined function from segments a to the positive
real numbers. If a = u then it is clear that the dyadic number 1 will
separate Du1 and Du2 . Thus, part (v) of the theorem is proven.

To prove the rest of the theorem it will be helpful to start with
part (iv). The number µ(a + b) is the Dedekind cut corresponding to a
segment congruent to a+b. That is, we have sets Da+b

1 and Da+b
2 defining

the Dedekind cut as described above. We have to show that the number
µa+µb satisfies the same conditions for Da+b

1 and Da+b
2 as µ(a+ b) does.

That is, we have to show that µa + µb separates the two sets.
By the definition of a Dedekind cut, we know that, for any dyadic

numbers w1 and w2, if we have w1u < a + b ≤ w2u, then w1 ∈ Da+b
1

and w2 ∈ Da+b
2 . By Theorem 11.54, w1u < a+ b ≤ w2u is equivalent to

w1 < µ(a+ b) ≤ w2. To show that µa + µb separates Da+b
1 and Da+b

2 we
must show that if if w1 < µa+µb ≤ w2, then w1 ∈ Da+b

1 and w2 ∈ Da+b
2 .

If w1 < µa + µb then we can find two other dyadic numbers w′1 and w′′1
such that w1 = w′1 + w′′1 and w′1 < µa, w′′1 < µb. Thus, w′1 is in Da1 and
w′′1 is in Db1. Equivalently,

w′1u < a and w′′1u < b. (11.1)

Thus, w1u = w′1u + w′′1u < a + b, and so w1 ∈ Da+b
1 . In a similar

fashion we can show that if w2u ≥ a + b then w2 ∈ Da+b
2 . This finishes

the proof of part (iv).
To prove part (i) of the Theorem, we note that the Archimedean

property states that given a = AA′ we can find an n such that na > u.
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Let p be chosen such that 2p > n. Now 2pa > u, or 1
2pu < a. Thus, 1

2p is
in Da1 . Since µ(a) must separate Da1 from Da2 , we get that µ(a) > 1

2p > 0.
For parts (ii) and (iii) of the theorem, we will prove half of the iff

statement first. That is, we will show that a ∼= b implies µ(a) = µ(b) and
a > b implies µ(a) < µ(b).

Suppose a ∼= b. Then, by segment ordering and congruence proper-
ties, we have wu < a iff wu < b. Thus, the Dedekind cuts for a and b
are identical and µ(a) = µ(b).

Suppose a < b and let a = AA′ and b = BB′. Since a < b there is a
point C with B ∗ C ∗ B′ and AA′ ∼= BC. Let c = B′C. Then a + c = b
and by part (iv) we have µ(a) + µ(c) = µ(b). Since µ(c) > 0 we have
µ(a) < µ(b).

Now, for the other half of statements (ii) and (iii). Suppose µ(a) =
µ(b). Then either a ∼= b or a < b or a > b. The last two are impossible,
as they imply µ(a) < µ(b) or µ(a) > µ(b), by the previous section of this
proof. Thus, a ∼= b.

Suppose µ(a) < µ(b). Then either a < b or a ∼= b or a > b. If a ∼= b
or a > b we again get a contradiction, and thus a < b.

Finally, we must show that µ is unique. Suppose there was another
function φ on segments with the properties of the theorem. Then, φ(u) =
1. Suppose for some segment a that φ(a) 6= µ(a). We may assume φ(a) <
µ(a). There exists a dyadic number 1

2n such that φ(a) + 1
2n < µ(a).

Let b = a + 1
2nu. Then, a < b. Let c be the “difference”of a and

b, i.e the segment remaining on b that is not congruent to a. By the
Archimedean axiom we can find k such that 1

2ku < c. Also, there is a
number j such that j 1

2ku ≤ a, but (j + 1) 1
2ku ≥ a. Then,

a ≤ (j + 1) 1
2k u = 1

2k u+ j
1
2k u < c+ a = b

Thus, we have found a dyadic number w = (j + 1) 1
2ku such that

a ≤ wu < b. Thus, w = µ(wu) ≥ µ(a). However, we also have

w = φ(wu) < φ(b) = φ(a) + 1
2n < µ(a)

which is a contradiction, and µ must be unique. 2
With this theorem we are now at liberty to talk about the “sum”

of two segments and to interpret the sum and difference of segments in
terms of their numerical lengths. Also, we have that for every positive
real number x there is a segment that has length x. Finally, we will define
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the length of AB to be zero if A = B. It is clear then, that the length
of AB (denoted by AB) is zero if and only if A = B.

An important subdivision process that is used extensively in analysis
is that of bisection. Given a segment AB, let A = A1 and B = B1. We can
find the midpointM1 of AB. Choose either A2 = M1 orM1 = B2 for the
next segment A2B2 in the bisection process. Then, the length of A2B2 is
half that of A1B1. Do the bisection process again, yielding segment A3B3

whose length is 1
4 that of the original segment. It is clear that we can

continue this process, generating a sequence of segments AnBn whose
length is 1

2n−1 times that of the original segment. By the continuity of
the reals, this sequence has segments whose lengths approach zero, and
thus there must be a point O common to all the sequence terms.

Exercise 11.8.1. Prove Lemma 11.49 by using four-point betweenness.

Exercise 11.8.2. Let AB be a segment and let C 6= C ′ be two points con-
tained in AB. Use a betweenness argument to show that the segment CC ′ is
contained in AB.

Exercise 11.8.3. Let a, b, and c be three segments. If a = b+ c, show that
b < a.

Exercise 11.8.4. Let a > b > c be three segments. Let AA′ be a segment
congruent to a. Show that there are points B and C on AA′ with AB ∼= b
and A′C ∼= c. Also, show that if b + c > a, then C is between A and B
and B is between C and A′. [Hint: Use Theorem 11.34, Theorem 11.53, and
exercise 11.8.3.]

Exercise 11.8.5. Let a, b, and c be three segments. Show that a+ (b+ c) =
(a+ b) + c.

Exercise 11.8.6. Prove part (iii) of Theorem11.54. [Hint: if w = 1
2k and

v = 1
2l , find a common denominator for w + v and argue (using the note

following the definition of dyadic segments) that one can re-arrange terms to
get (w + v)a = wa+ va.]

Exercise 11.8.7. Prove part (v) of Theorem11.54. [Hint: If w = 1
2k and

v = 1
2j , find a common denominator and argue that w < v implies wa < va]

11.9 ANGLE MEASURE
To define a measure function for angles, we will need to first establish a
Dedekind property for rays.
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Theorem 11.56. (Dedekind’s Axiom for Rays) Suppose that the
rays within ∠ABC are partitioned into two nonempty subsets σ1 and
σ2 such that no ray of σ1 is between two rays of σ2 and vice-versa.
Also suppose that σ1 and σ2 both contain at least one ray interior
to ∠ABC. Then there is a unique ray −−→BO interior to ∠ABC such
that −−→BO is between two interior rays −−→BP1 and −−→BP2 if and only if
one of −−→BP1 or −−→BP2 is in σ1, the other is in σ2, and

−−→
BO does not

coincide with −−→BP1 or −−→BP2. We will call such a partition a Dedekind
cut for ∠ABC.

Proof: Consider segment AC. We know by earlier work on between-
ness that the only rays within ∠ABC are those which intersect AC, and
for each point D on AC with A ∗D ∗C, we know that BD is interior to
∠ABC. Thus, since σ1 and σ2 partition the angle, and there is a direct
correspondence between rays within the angle and points on AC, then
the intersections of the rays in σ1 and σ2 will partition the points on
AC.

We define a Dedekind cut on ←→AC as follows. First, −−→BC must be in
one of σ1 or σ2. We can assume that it is in σ2. Then,

−→
BA cannot also

be in σ2, for we know there is an interior ray in σ1 and this ray would
then be between two rays of σ2, as every interior ray is between −→BA
and −−→BC. So, −→BA is in σ1. On the line ←→AC define Σ1 to be the set of
intersection points of rays of σ1 with AC (thus A is in Σ1 ) along with
the ray opposite to −→AC. Let Σ2 be the set of intersection points of rays
of σ2 with AC (thus C is in Σ2) along with the ray opposite to −→CA.
Then, Σ1 and Σ2 partition ←→AC.

Does this cut satisfy the betweenness condition for Dedekind’s ax-
iom? Suppose that X, Y are in Σ1 and Z is in Σ2 with X ∗ Z ∗ Y . If Z
is not interior to AC then it is on the opposite ray to −→CA. But, X, Y
are on ray −→CA, and thus it is impossible for X ∗ Z ∗ Y . So, Z must be
interior to AC.

If neither X nor Y is interior to AC, then both would be on the
ray opposite −→AC and Z would also be on this ray, since X ∗Z ∗ Y . This
contradicts Z being interior to AC. Thus, one of X or Y must be interior
to AC. Without loss of generality, we can assume that X is interior to
AC. If Y is not interior to AC, then Y would be on the ray opposite −→AC.
Since Z is on −→AC, we have Z ∗A∗Y . Then, using four-point betweenness
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with Y ∗A ∗Z and Y ∗Z ∗X, we have A ∗Z ∗X, and thus Z is between
two points of Σ1, which is impossible. We are forced to conclude that all
of X, Y, Z are interior to AC. But, then X ∗Z ∗ Y would imply that the
rays associated with these points have this betweenness property which
is impossible by the hypotheses of the theorem.

An exactly analogous argument rules out the possibility of X in Σ1
and Z,W in Σ2 with Z ∗X ∗W .

Thus, there is a unique point O on ←→AC with the properties specified
by Dedekind’s axiom. If O ∗ A ∗ C then O is on the ray opposite −→AC.
By Betweenness axiom II-2, there is a point E with E ∗O ∗A. Then, O
would be between two points of Σ1 which is impossible. Likewise, it is
impossible for A ∗C ∗O. Thus, the only possibilities left are that O = A
or O = C or A ∗O ∗ C.

Suppose that O = A. By the hypothesis of the theorem, we know
there is a ray, say −−→BP , that is interior to ∠ABC and in σ1. By the
Crossbar theorem, we can assume P is interior to AC. Then, P is in Σ1
and we have O between two points, A and P , of Σ1 which contradicts
Dedekind’s axiom. Thus, O 6= A. Likewise, we can show that O 6= C.

Thus, A ∗ O ∗ C, and −−→BO will have the desired properties since the
betweenness properties for rays will follow directly from those of points
on the segment AC. 2

Note the slight difference in the Dedekind property for angles, as
compared to segments. The angle property is valid for a bounded set of
angles, while the segment property is defined for a (possibly) unbounded
line.

There is an Archimedean property for angles, just as there was for
segments. To state this result we need the notion of “laying off” angles
on a given ray.

Definition 11.27. We say that angle ∠DEF is laid off n times
(n a positive integer) on a ray −→BA if there is a sequence of rays
−−→
BA0 = −→BA,−−→BA1,

−−→
BA2, . . . ,

−−→
BAn with ∠Ak−1BAk ∼= ∠DEF for

k = 1 . . . n and ray −−→BAk between
−→
BA and −−−−→BAk+1 for k = 1 . . . n−1.

We also write n∠DEF for laying off ∠DEF n times.

We will need the following lemma to prove the Archimdean property
for angles. This is directly analogous to Lemma 11.49 that was used to
prove the Archimedean property for segments. We will use the notation−→
BA ∗

−−→
BC ∗

−−→
BD to designate that −−→BC is between −→BA and −−→BD.
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Lemma 11.57. Let angle ∠DEF be laid off n times on −→BA. Let
{
−−→
BAk}nk=0 be the corresponding sequence of rays. Then, −→BA∗−−→BAj ∗−−→
BAk for all j = 1 . . . n− 1, k = 2 . . . n, with j < k.

Proof: Exercise. 2

Theorem 11.58. (Archimedes Axiom for Angles) Given ∠ABC let
∠ABM be the angle bisector. Then, for any angle ∠DEF , there is
a positive integer n such that if we lay off ∠DEF n times beginning
on −→BA (yielding −−→BAn) then ∠ABM < ∠ABAn.

Proof: Suppose that no such n exists, i.e. for all n > 1 the angle ∠ABAn
reached by laying off ∠DEF n times is not greater than ∠ABM . Then,
for all n we have that −−→BAn 6=

−−→
BM , for if −−→BAn = −−→BM for some n, then we

could lay off the angle one more time, yielding an angle that is within
∠ABC and also greater than ∠ABM . Thus, we can assume that for
all n, ∠ABAn < ∠ABM . We will define a Dedekind cut for the angle
∠ABC as follows.

Let σ1 be the set of rays −−→BP within ∠ABC such that ∠ABAn <
∠ABP for all n. That is, −→BA ∗ −−→BAn ∗

−−→
BP for all n. Then, −−→BM is in Σ1

and −−→BC is also in σ1 as ∠ABM < ∠ABC. Let σ2 be the set of remaining
rays within ∠ABC. For all n, −−→BAn is in σ2 and σ2 is non-empty. We
note that −→BA is in σ2. Also, both σ1 and σ2 contain interior points of
∠ABC.

Next we show the betweenness condition in Theorem 11.56 is satis-
fied. Let −−→BQ1,

−−→
BR1 be rays in σ1 and −−→BQ2,

−−→
BR2 be rays in σ2. Suppose

that −−→BQ2 ∗
−−→
BQ1 ∗

−−→
BR2. Since

−−→
BQ2 and −−→BR2 are not in Σ1, then for

some n1, we must have −→BA ∗ −−→BQ2 ∗
−−−→
BAn1 . Also for some n2, we have

−→
BA∗

−−→
BR2∗

−−−→
BAn2 . If n1 = n2 we can use the fact that−→BA∗−−−→BAn2∗

−−−−−→
BAn2+1,

and four-point betweenness for angles, to show that −→BA∗−−→BR2 ∗
−−−−−→
BAn2+1.

Thus, we can assume that n1 6= n2, and without loss of generality, that
n2 > n1. By the previous lemma we know that −→BA∗−−−→BAn1 ∗

−−−→
BAn2 . Since−→

BA ∗
−−→
BQ2 ∗

−−−→
BAn1 , then

−→
BA ∗

−−→
BQ2 ∗

−−−→
BAn2 by four-point betweenness for

angles. Using−→BA∗−−→BQ2∗
−−−→
BAn2 ,

−→
BA∗

−−→
BR2∗

−−−→
BAn2 , and

−→
BA∗

−−−→
BAn2∗

−−→
BQ1 we

have by 4-point betweenness that −→BA∗−−→BQ2 ∗
−−→
BQ1 and −→BA∗−−→BR2 ∗

−−→
BQ1.

Thus, −−→BQ2 and −−→BR2 are both within ∠BAQ1. But, this contradicts the
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assumption that −−→BQ2∗
−−→
BQ1∗

−−→
BR2, and so a ray in σ1 cannot be between

two rays of σ2.
Suppose on the other hand that−−→BQ1∗

−−→
BQ2∗

−−→
BR1. A similar argument

to the previous one will again yield a contradiction.
Thus, the conditions for Theorem 11.56 are satisfied and there must

be a unique ray −−→BO with the properties stated in the theorem. If −−→BO =−−→
BAn for some n, then −→BA∗−−→BO∗−−−−→BAn+1 would imply by the theorem that−−−−→
BAn+1 is in σ1, which is impossible. If −−→BO 6= −−→BAn, but

−→
BA ∗

−−→
BO ∗

−−→
BAk

for some k then −−→BO would be between two rays of σ2, which would also
contradicts Theorem 11.56. Thus, −−→BO must be in Σ1.

To finish the proof, we must show that the existence of ray −−→BO leads
to a contradiction. This can be done following the last part of the proof
of Theorem 11.50 and will be left as an exercise. 2

We note that this theorem implies that there is no infinitely small
angle or infinitely large angle, just as we had for segments.

We can now construct angle measure. The proof of this result is
basically the same as that for segment measure and will be omitted.

Theorem 11.59. Given an angle ∠UOV , which we will call a unit
angle, there is a unique way of assigning an angle measure, denoted
by ν(∠ABC), to any angle ∠ABC such that

(i) ν(∠ABC) > 0 for all angles ABC.

(ii) ∠ABC ∼= ∠DEF iff ν(∠ABC) = ν(∠DEF ).

(iii) If ∠ABC < ∠DEF then ν(∠ABC) < ν(∠DEF ).

(iv) If −−→BD is between −→BA and −−→BC then ν(∠ABD)+ν(∠CBD) =
ν(∠ABC).

(v) ν(∠UOV ) = 1.

Note that it is not important what the unit angle ∠UOV is or what
angle measure it is assigned. We could just as well start with a right
angle and assign it an angle measure of 90 degrees, or π2 or 1 for that
matter. Let us assume that the unit angle is a right angle and that it
has measure equal to 90 degrees.
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Theorem 11.60. The measure of an acute angle is less than 90.
The measure of any angle is less than 180. The measure of an angle
plus the measure of its supplement adds to 180.

Proof: The first part of the theorem is clear from the definition of an
acute angle. For the second part, the result is clear if the angle is acute
or right. Suppose that ∠BAC is obtuse.

FindB′ on the opposite ray to−→AB
and D on the same side of the line
through A,B such that ∠BAD is
a right angle. By the definition of
an obtuse angle we have that −−→AD
is between −→AC and −→AB and thus
the measure of ∠BAC is the sum
of the measures of angles BAD
and DAC.

B’ BA

D

C

Now, by Theorem 11.26 we have that −→AC is between
−−→
AB′ and −−→AD.

Thus, ∠DAC is acute and the measure of ∠BAC is 90+β, where β < 90.
For the third part, the result is obvious if the given angle is a right an-

gle. Otherwise, since the supplement of an acute angle is obtuse, and the
supplement of an obtuse angle is acute by Theorem 11.35, we can assume
that we have an angle BAC that is obtuse and that we can construct
the configuration shown in the figure above. Let α1 be the measure of
∠BAC, α2 be the measure of ∠DAC, and α3 be the measure of ∠B′AC.
Then, using the same reasoning as in the preceding paragraphs we have
that

α1 = 90 + α2, 90 = α3 + α2.

Thus, the sum of ∠BAC and its supplement is α1 + α3 = 90 + α2 +
90 − α2 = 180. 2 Note that the proceeding result on angles and their
supplements is actually Proposition 13 of Book I of Elements.

The next result is the converse to the third part of the previous
theorem and is also Proposition 14 of Book I of Elements.
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Theorem 11.61. If the measures of two adjacent angles adds to
180, then the angles are supplementary.

Proof: Let ∠BAC and ∠CAD share side −→AC and have measure summing
to 180. Now, let ∠CAE be the supplement to ∠BAC. Since the sum of
the measures of ∠CAE and ∠BAC also sum to 180 by the previous
theorem, we have that the measure of ∠CAE equals the measure of
∠CAD. By the Angle Measure Theorem we have that ∠CAE ∼= ∠CAD.
The result follows by Congruence Axiom III-4. 2

At this point in our development of the foundations of geometry, we
stop to consider our roster of proven results as compared with Euclid’s
propositions. We have shown that Euclid’s Propositions 2-15, 23, and
ASA (half of 26) are on a solid footing using Hilbert’s incidence, be-
tweenness, congruence, and Dedekind axioms. We have also shown that
segment and angle measure are well defined using these axioms. Hilbert’s
incidence, betweenness, congruence, and Dedekind axioms form the ax-
iomatic foundation of Euclidean and Hyperbolic geometry, and thus all
of our results so far hold in these geometries.

As noted in the section on betweenness (section 11.2), Hilbert’s be-
tweenness axioms do not hold in Elliptic geometry. However, in Chap-
ter 14 we will show that the incidence and betweenness axioms can be
slightly modified so that the results we have shown so far do hold in
Elliptic Geometry.

Also, the results in this section that rely on the betweenness axioms,
and the property that a line has infinite extent, will not hold in Elliptic
Geometry. For example, Dedekind’s axiom does not hold. However, in
Elliptic geometry lines are bounded, and thus are equivalent to segments.
If we restrict Dedekind’s axiom to segments, and recast all of the theo-
rems on segment measure so that they are stated with the assumption
that all constructions take place within a segment, then all of the results
will still hold. We will cover this in more detail in Chapter 14.

Exercise 11.9.1. Prove Lemma 11.57.

Exercise 11.9.2. Finish the proof of Theorem 11.58 (Archimedes’s Axiom
for angles). [Hint: Convert the probelem to one of points on a segment and
use the last part of the proof of Theorem 11.50.]
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11.10 CONTINUITY
In the preceding sections we have covered many of the basic results that
hold in Euclidean, Hyperbolic, and (with some modification) Elliptic
geometry. However, we still have not developed a foundation for the very
first construction in Euclid’s Elements, the construction of an equilateral
triangle from a given segment. This is Proposition 1 of Book I.

In Euclid’s proof of Proposition 1, there is an implicit assumption
that a circle with points inside and outside of another circle must inter-
sect that circle somewhere. This basic circle intersection property cannot
be proven from the axioms and theorems we have covered so far in this
chapter.

To investigate this circle intersection property we first need a defini-
tion of circles and their properties.

Definition 11.28. Let O be a point and let AB be a segment. The
circle of radius AB and center O is the set of all points P such that
OP ∼= AB. A point Q is said to be an interior point (or said to be
inside the circle) if Q = O or OQ < AB. If OQ > AB the point Q
is said to be an exterior point (or outside the circle).

The basic circle intersection property that we desire can be stated
as follows:

• (Circle-Circle Continuity) Given two circles c1 and c2, with
centers O1 and O2, if c1 contains a point inside of c2 and
also contains a point outside of c2, then there are exactly
two distinct points of c1 that are also on c2. ( We say they
intersect in two points)

There are several approaches to tackling the issue of circle intersec-
tions. One could stipulate that circle-circle intersection is an axiom. Al-
ternatively, we could prove the property. Hilbert used Dedekind’s axiom
to prove the circle-circle intersection property. We will review Hilbert’s
proof in Chapter 12. This proof is valid in both Euclidean and Hyper-
bolic geometry. In Chapter 14 we will see that there is also a circle-circle
intersection property for Elliptic geometry. Thus, this fundamental con-
tinuity property is common to all three of the main geometries we have
considered in this text.

We can use the circle-circle intersection property to prove Euclid’s
Proposition 1.
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Theorem 11.62. Given AB we can construct a triangle ∆ABC
that is an equilateral triangle, i.e. a triangle with all sides congruent.

Proof: Let cA be the circle with center A and radius AB and let cB
be the circle with center B and radius AB. Then, A is on cB and A is
inside cA.

On the other side of B from A we
can find a point D on −→AB such
that BD ∼= AB (Axiom III-1).
Then, D is on cB. Also, A ∗B ∗D
and AD > AB . Thus, D is out-
side cA.

So, cB has a point (A) in-
side cA and a point (D) outside
cA. By the Circle-Circle Conti-
nuity axiom (IV-1) we have that
these two circles intersect in ex-
actly two points. Let C be one of
these points.

Since C is on cB we have that BC ∼= AB and since C is on cA we have
that AC ∼= AB. By axiom III-2 we have that BC ∼= AC and ∆ABC is
equilateral. 2

11.11 TRANSFORMATIONS
A transformation will be some function on points. That is, it will be
some process whereby points are transformed to other points. This pro-
cess could be the simple movement of points or could be a more complex
alteration of the points. In this section we will investigate transforma-
tions that preserve the property of congruence. We will make extensive
use of all of the other results covered in this chapter, including segment
measure. For sake of exposition and brevity, we will provide proofs with-
out direct reference to Theorem number and verse. Much of the material
in this section mirrors that of sections 5.1 and 5.2.
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11.11.1 Congruence Transformations

Definition 11.29. A function f on the set of all points is called
a congruence transformation if f has the property that lines are
mapped to lines by f , and for all points A and B the segment AB
and the transformed segment f(A)f(B) are congruent.

This simple definition has important implications.

Theorem 11.63. Let f be a congruence transformation. Then

(i) f is one-to-one. That is, if f(A) = f(B), then A = B.

(ii) If f(A) = A′ and f(B) = B′, then f maps all points
between A and B to points between A′ and B′. That is,
f(AB) = A′B′ (f preserves betweenness).

(iii) f preserves angles.

(iv) f is onto the set of all points. That is, for all points P ′,
there is a point P such that f(P ) = P ′.

(v) f preserves parallel lines.

Proof: (i) Suppose f(A) = f(B). Then, f(A)f(B) = 0. Suppose A 6=
B. Then, AB is a segment of non-zero length. By the definition of a
congruence transformation, AB ∼= f(A)f(B), and so f(A)f(B) would
be a segment of non-zero length, which contradicts f(A)f(B) = 0. Thus,
A = B and f is one-to-one.

(ii) Let C be a point between A and B and let C ′ = f(C). We need
to show that C ′ is on the line through A′, B′ and that C ′ is between A′
and B′. Since f is one-to-one, C ′ cannot be A′ or B′. Now, by segment
measure and segment addition, we have that AB = AC + CB. Since f
is a congruence transformation, we have that

A′B′ = A′C ′ + C ′B′

We know that C ′ is on the line through A′, B′, since that is a defining
property of f . Now either A′ is between B′ and C ′, or B′ is between A′
and C ′, or C ′ is between A′ and B′. In the first case, we would get

B′C ′ = B′A′ + A′C ′
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If we subtract this from the equation above, we would get

A′B′ −B′C ′ = C ′B′ −B′A′

and
2A′B′ − 2B′C ′ = 0

So A′B′ = B′C ′, which would contradict the fact that A′B′ < B′C ′ if
A′ is between B′, C ′. Likewise, we cannot have B′ between A′, C ′, and
so C ′ must be between A′, B′.

(iii) Let ∠ABC be an angle with vertex B. Since f preserves segment
congruences, by SSS triangle congruence, ∆ABC and ∆f(A)f(B)f(C)
will be congruent and their angles will be congruent.

(v) By incidence axiom III-3, we know there are at least three distinct
points. Since f is one-to-one, there must be two points A 6= B such that
f(A) 6= f(B) 6= P ′. Let f(A) = A′ and f(B) = B′. There are two cases
for A′, B′, P ′: either they lie on the same line or not.

If A′, B′, P ′ are collinear, then P ′ is either on the ray
−−→
A′B′ or on the

opposite ray. Suppose P ′ is on
−−→
A′B′. Let P be a point on −→AB such that

AP = A′P ′. Since AP = f(A)f(P ) = A′f(P ) and since P ′ and f(P )
are on the same ray

−−→
A′B′, then P ′ = f(P ). If P ′ is on the opposite ray

to
−−→
A′B′, we would get a similar result.
If A′, B′, P ′ are not collinear, then consider ∠P ′A′B′. On either

side of the ray through A,B, we can find two points P,Q such that
∠P ′A′B′ ∼= ∠PAB ∼= ∠QAB (Figure 11.15).

A

B

A’

B’

P’

P

Q

Figure 11.15

We can also choose these points such that AP = AQ = A′P ′. Since
f preserves betweenness (proved in statement (ii)) we know that one
of A′f(P ) or A′f(Q) will be on the same side as A′P ′. We can assume
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that A′f(P ) is on this same side. Then, since f preserves angles, we
have that ∠P ′A′B′ ∼= ∠f(P )A′B′ and thus

−−→
A′P ′ ∼=

−−−−→
A′f(P ). Since f

preserves lengths, we have that A′P ′ = AP = f(A)f(P ) = A′f(P ) and
thus P ′ = f(P ).

(vi) Let l,m be parallel lines. Suppose that f(l), f(m) were not par-
allel. Then, for some P on l and Q on m, we would have f(P ) = f(Q).
But, we know that PQ 6= 0 as l and m are parallel. Thus, f(P )f(Q) 6= 0
and we cannot have f(P ) = f(Q). We conclude that f(l), f(m) must be
parallel. 2

Congruence transformations also have inverses that are congruence
transformations.

Definition 11.30. Let f, g be functions on a set S. We say that
g is the inverse of f if f(g(s)) = s and g(f(s)) = s for all s in
S. That is, the composition of g and f (f and g) is the identity
function on S. We denote the inverse by f−1.

The proof of the inverse property is left as an exercise. It is also the
case that the composition of two congruence transformations is again a
congruence transformation (exercise).

Congruence transformations can be classified by their fixed points.

Definition 11.31. Let f be a congruence transformation. P is a
fixed point of f if f(P ) = P .

How many fixed points can a congruence transformation have?

Theorem 11.64. If points A,B are fixed by a congruence trans-
formation f , then the line through A,B is also fixed by f .

Proof: We know that f will map the line ←→AB to the line
←−−−−−→
f(A)f(B).

Since A,B are fixed points, then ←→AB gets mapped back to itself.
Suppose that P is between A and B. Then, since f preserves be-

tweenness, we know that f(P ) will be between A and B. Also

AP = f(A)f(P ) = Af(P )

This implies that P = f(P ).
A similar argument can be used in the case where P lies elsewhere

on ←→AB. 2
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Definition 11.32. The congruence transformation that fixes all
points in the plane will be called the identity and will be denoted as
id.

Theorem 11.65. A congruence transformation f having three non-
collinear fixed points must be the identity.

A

B

C

P

Q

R

Figure 11.16

Proof: Let A,B,C be the three non-collinear fixed points. From the
previous theorem we know that f will fix lines ←→AB, ←→AC, and ←→BC.

Let P be a point not on one of these lines. Let Q be a point between
A,B (Figure 11.16). Consider the line through P,Q. By Pasch’s axiom,
this line will intersect one of AC or BC at some point R. By the previous
theorem, f fixes the line ←→QR and thus fixes P . Since P was chosen
arbitrarily, then f fixes all points in the plane and is the identity. 2

Corollary 11.66. If two congruence transformations f, g agree on
any three non-collinear points, then the two functions must agree
everywhere, that is, f = g.

The proof of this result is left as an exercise.
It is clear from this theorem that we can classify congruence transfor-

mations into three non-trivial (non-identity) types: those with two fixed
points, those with one fixed point, and those with no fixed points.
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11.11.2 Reflections

Definition 11.33. A congruence transformation with two different
fixed points, and that is not the identity, is called a reflection.

What can we say about a reflection? By Theorem 11.64 if A,B are
the fixed points of a reflection, then the reflection also fixes the line
through A,B. This line will turn out to be the equivalent of a “mirror”
through which the transformation reflects points.

Theorem 11.67. Let r be a reflection fixing A and B. If P is
not collinear with A,B, then the line through A and B will be a
perpendicular bisector of the segment connecting P and r(P ).

Proof:

Drop a perpendicular from P to←→
AB, intersecting at Q. At least
one of A or B will not be coin-
cident with Q; suppose B is not.
Consider ∆PQB and ∆r(P )QB.
Since we know that Q and B are
fixed points of r, then PQ =
r(P )Q, BP = Br(P ), and the
two triangles are congruent by
SSS.

A

B

P

Q

r(P)

Since the two congruent angles at Q make up a straight line,
∠r(P )QB will be a right angle and ←→AB will be a perpendicular bisector
of the segment Pr(P ). 2

We call the line through A,B the line of reflection for r.

Theorem 11.68. Let P, P ′ be two points. Then there is a unique
reflection taking P to P ′. The line of reflection will be the perpen-
dicular bisector of PP ′.

Proof: Let ←→AB be the perpendicular bisector of PP ′ (Figure 11.17).
Define a function r on the plane as follows: If a point C is on ←→AB, let
r(C) = C. If C is not on this line, drop a perpendicular from C to ←→AB
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intersecting at Q, and let r(C) be the unique point on this perpendicular
such that r(C) 6= C, Q is between C and r(C), and r(C)Q ∼= CQ.

Will r be a congruence transformation? We need to show that r maps
lines to lines, and that for all C 6= D, r(C)r(D) = CD. We start with
the second condition.

Let C be a point not on ←→AB and D a point on the same side of ←→AB
as C. Consider Figure 11.17. By SAS, ∆QRD ∼= ∆QR r(D).

A B

P

Q

C D

R

P’

r(C)

r(D)

Figure 11.17

Again using SAS congruence, we have ∆CQD ∼= ∆r(C) Q r(D).
Thus, CD = r(C) r(D). Similar arguments using congruent triangles
can be used if D is on ←→AB or on the other side of ←→AB as C. (The proof
is left as an exercise.)

If C is a point on ←→AB and if D is also on ←→AB, then clearly CD =
r(C) r(D). If D is not on ←→AB, then a simple SAS argument will show
that CD = r(C) r(D).

Now we need to show that r maps lines to lines. It is clear by the
definition of r that it maps←→AB to itself. Let l be a line not equal to←→AB.
Then, l contains a point C not on ←→AB. If l =

←−−→
Cr(C), then, it is clear

that all point on l get mapped to the same perpendicular
←−−→
Cr(C). There

are two remaining cases to consider —either l intersects ←→AB (and is not
perpendicular to ←→AB), or l is parallel to ←→AB.

Suppose that l intersects ←→AB at D with l not perpendicular to ←→AB
(Figure 11.18). Then, C, D, and r(C) define an angle. Let E 6= C be
another point on −−→DC.
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Figure 11.18

On
−−−−→
D r(C) we can find a point F such that DE ∼= DF . By the

Crossbar theorem, one of the rays defined by D on←→AB will intersect EF
at a point R. Also, by SAS congruence, we have ∆QCD ∼= ∆Q r(C) D,
where Q is the intersection of the perpendicular from C to ←→AB. Thus,
∠QDC ∼= ∠QD r(C). By SAS congruence, we have that ∆RDE ∼=
∆RDF and ER ∼= FR. Thus ∠FRD ∼= ∠ERD and←→EF is perpendicular
to ←→AB at R. By the definition of r we conclude that r(E) = F . Clearly,
the same argument can be used for the ray opposite −−→DC. Thus, r maps
l to a line through D.

The case where l is parallel to ←→AB will be left as an exercise.
We have now shown that r is a congruence transformation, but is it

unique? Suppose there was another reflection r′ taking P to P ′, where
P is not on←→AB. By the previous theorem we know that the fixed points
of r′ are on the perpendicular bisector of PP ′. Since the perpendicular
bisector is unique, we have that the fixed points of r′ are on ←→AB. Thus,
r and r′ have the same values on three non-collinear points P , A, and B
and so r = r′. 2

We know that a congruence transformation f maps a triangle ∆ABC
to a triangle ∆PQR, with ∆ABC ∼= ∆PQR. We can conversely ask
whether, given two congruent triangles, there is a congruence transfor-
mation that maps one to the other. We will see that there is such a
transformation, given by a sequence of reflections.

Recall that ∆ABC ∼= ∆PQR if and only if

AB ∼= PQ,AC ∼= PR,BC ∼= QR

and
∠BAC ∼= ∠QPR,∠CBA ∼= ∠RQP,∠ACB ∼= ∠PRQ

In other words, there is an ordering to the vertex listing for two
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congruent triangles. It will be important to keep this in mind during the
rest of this section.

We will start with an easy case. Clearly, if two triangles are identical,
then the identity transformation will map the triangle to itself. The next
easiest case is if the triangles share a side.

Lemma 11.69. Let ∆ABC ∼= ∆PQR with A = P and B = Q.
Then the triangles are the same, or there is a reflection that takes
∆ABC to ∆PQR.

Proof: Suppose that C and R are on the same side of ←→AB. Then, since
there is a unique angle with side AB and measure equal to the measure
of ∠BAC, then R must lie on −→AC. Likewise, R must lie on −−→BC. But,
the only point common to these two rays is C. Thus, R = C.

If C and R are on different sides of ←→AB, then drop a perpendicular
from C to ←→AB, intersecting at P . By SAS, ∆PAC and ∆PAR are con-
gruent, and thus ∠APR must be a right angle, and R is the reflection
of C across ←→AB. 2

Lemma 11.70. Let ∆ABC and ∆PQR be two congruent triangles
with A = P . Then there is a sequence of at most two reflections that
take ∆ABC to ∆PQR.

Proof: Clearly, A 6= Q. If B = Q, then we would be in the case of the
previous theorem, and the result follows.

So, we can assume that A, B, and Q are distinct points. Suppose Q,
A, and B are collinear. Since Q 6= B, then Q and B must be on opposite
sides of A. Let l1 be the perpendicular bisector of QB. Then, l1 passes
through A and reflection across l1 fixes A and maps B to Q.

If Q, A, and B are not collinear, let l1 be the angle bisector of ∠BAQ
and r1 the reflection across l1.

Consider ∆QAB. The line l1 will
intersect QB at some point, say I.
Then, ∆BAI ∼= ∆QAI by SAS.
This means that l1 is the perpen-
dicular bisector of QB and that Q
is the reflection of B across l1.

A (=P)

B

C
Q = r

1
(B)

R

l
1
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We conclude that if two triangles (∆ABC and ∆PQR) share a single
point in common (A = P ), then there is a reflection that maps ∆ABC
to congruent triangle ∆AQS, for some S. This triangle is also congruent
to ∆PQR, with P = A. By the previous theorem, there is at most one
reflection that takes ∆AQS to ∆AQR = ∆PQR. Thus, there are at
most two reflections taking ∆ABC to ∆PQR. 2

We are now ready to consider the general case of two congruent
triangles in any configuration.

Theorem 11.71. Let ∆ABC and ∆PQR be two congruent trian-
gles. Then there is a sequence of at most three reflections that take
∆ABC to ∆PQR.

Proof: Exercise. 2
Since the composition of congruence transformations is a congruence

transformation, we can re-state this theorem as “Given two congruent
triangles, there is a congruence transformation taking one to the other.”
This theorem has the following amazing corollary:

Corollary 11.72. Every congruence transformation can be written
as the product of at most three reflections.

Proof: Let f be a congruence transformation and consider trian-
gle ∆ABC. We know that ∆f(A) f(B) f(C) is a triangle congruent
to ∆ABC and, by the preceding theorem, there is a congruence trans-
formation g composed of at most three reflections taking ∆ABC to
∆f(A) f(B) f(C). Since two congruence transformations that agree on
three non-collinear points must agree everywhere, then f must be equal
to g. 2

In this chapter, we have shown that Euclid’s Propositions 1-15, 23,
and ASA (half of 26) can be put on a solid axiomatic footing using the
circle-circle intersection property and Hilbert’s incidence, betweenness,
congruence, and Dedekind axioms. We have also shown that reflections
and their properties are valid within this axiomatic system. The results
covered in this chapter form an axiomatic basis for all three of the major
geometries we have covered —Euclidean, Hyperbolic, and Elliptic (with
some minor adjustments for Elliptic geometry). As such, we will call a
geometry based on these axioms a Universal geometry.
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Exercise 11.11.1. Prove that the composition of two congruence transfor-
mations is again a congruence transformation.

Exercise 11.11.2. Show that any congruence transformation f has an in-
verse, which we will denote by f−1. Also, show that the inverse of a congruence
transformation is a congruence transformation.

Exercise 11.11.3. Prove Corollary 11.66.

Exercise 11.11.4. Fill in the first open question from the proof of Theo-
rem 11.68 That is, given the definition of the function r from the first part of
the proof, let C be a point not on ←→AB and let D be a point either on ←→AB or
on the other side of ←→AB as C. Show that r(C) r(D) = CD.

Exercise 11.11.5. Fill in the first open question from the proof of Theo-
rem 11.68 That is, given the definition of the function r from the first part of
the proof, show that r maps the points on a line l parallel to ←→AB to points that
are all on another line. That is r maps lines parallel to ←→AB to other lines.

Exercise 11.11.6. Prove Theorem 11.71


