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Foundations of Projective
Geometry

What a delightful thing this perspective is!
— Paolo Uccello (1379-1475) Italian Painter and Mathemati-
cian

15.1 AXIOMS OF PROJECTIVE GEOMETRY
In section 9.3 of Chapter 9 we covered the four basic axioms of Projective
geometry:

P1 Given two distinct points there is a unique line incident on these
points.

P2 Given two distinct lines, there is at least one point incident on
these lines.

P3 There exist three non-collinear points.

P4 Every line has at least three distinct points incident on it.

We then introduced the notions of triangles and quadrangles and saw
that there was a finite projective plane with 7 points and 7 lines that
had a peculiar property in relation to quadrangles. The odd quadrangle
behavior turns out to absent in most of the classical models of Projective
geometry. If we want to rule out this behavior we need a fifth axiom:

Axiom P5: (Fano’s Axiom) The three diagonal points of a complete
quadrangle are not collinear.
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This axiom is named for the Italian mathematician Gino Fano (1871–
1952). Fano discovered the 7 point projective plane, which is now called
the Fano plane. The Fano plane is the simplest figure which satisfies Ax-
ioms P1–P4, but which has a quadrangle with collinear diagonal points.
(For more detail on this topic, review section 9.3.4.)

The basic set of four axioms is not strong enough to prove one of the
classical theorems in Projective geometry —Desargues’ Theorem.

Theorem 15.1. Given two triangles ∆ABC and ∆A′B′C ′, if the
two triangles are perspective from a point O, then corresponding
sides, when extended, intersect at three points which are collinear.

The geometry of the Moulton Plane satisfies axioms P1–P4, but does
not satisfy Desargues’ Theorem. This was shown in exercises 9.3.11 and
9.3.12 in Chapter 9. If we want to guarantee that Desargues’ Theorem
holds, we need a new axiom:

Axiom P6: Given two triangles ∆ABC and ∆A′B′C ′, if the two
triangles are perspective from a point O, then corresponding sides, when
extended, intersect at three points which are collinear.

The transformations of projective geometry that serve as the counter-
part to the isometries of Euclidean and Non-Euclidean geometry are the
projectivities. These are built of simple perspectivities. A persepectivity
is defined in terms of pencils.

Definition 15.1. The pencil of points with axis l is the set of all
points on l. In a dual sense, the pencil of lines with center O is the
set of all lines through point O. (Fig. 15.1)
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We define what the idea of being perspective from O in terms of
pencils of points. We also note the dual definition for pencils of lines.

Definition 15.2. A perspectivity with center O is a 1-1 mapping
of a pencil of points with axis l to a pencil of points with axis l′ such
that if A on l is mapped to A′ on l′, then

←→
AA′ passes through O.

In a dual sense, the perspectivity with axis l is a 1-1 mapping of
a pencil of lines with center O to a pencil of points with center O′
such that if line a through O is mapped to line a′ through O′, then
the intersection of a and a′ lies on l.
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A perspectivity with center O is denoted by the symbol
O
Z. A per-

spectivity with axis l is denoted by the symbol
l
Z. Thus, in Fig. 15.2 we

have ABC
O
Z A′B′C ′ and abc

l
Z a′b′c′.

The composition of two perspectivities need not be a perspectivity.
But, compositions of compositions of perspectivities will again be a com-
position of perspectivities. It is these compositions that form the group
of transformations in Projective geometry. We call these transformations
projectivities.

Definition 15.3. A mapping of one pencil into another is a pro-
jectivity if the mapping can be expressed as a finite composition of
perspectivities.

A projectivity is denoted by the symbol Z. Thus, if ABC Z A′B′C ′
then there is a finite sequence of perspectivities that maps the collinear
points ABC to the collinear points A′B′C ′.

From Corollary 9.7, we know that there exist non-identity projectiv-
ities that map two points of a line back to themselves, i.e. that leave two
points of a line invariant. This is quite different than what happens with
isometries in Euclidean and Hyperbolic geometry. If an isometry fixes
two points, then it is a reflection across the line through the two points,
and it must leave every point on the line invariant. The isometry acts as
the identity transformation on the line.

A natural question to ask, then, is whether a projectivity that fixes
three points on a line must be the identity on that line. This result is
provable in the Real Projective plane, but is not axiomatically provable
from axioms P1-P4, or even if we add P5 and P6. If we want this property
of projectivities to be true in Projective geometry, we must add this
property as an additional axiom.

Axiom P7: If a projectivity leaves three distinct points on a line
invariant, then the projectivity must be the identity on the pencil of
points on that line.

We will now prove that this axiom is logically equivalent to Pappus’s
Theorem. We will use the a shorthand notation for the intersection point
of two lines or the line defined by two points.



Foundations of Projective Geometry � 175

Definition 15.4. Given two distinct lines a and b, a·b is the unique
point of intersection of these lines. Given two distinct points A and
B, AB is the unique line defined by these two points.

Theorem 15.2. (Pappus’s Theorem) Let A,B,C be three distinct
points on line l and A′, B′, and C ′ be three distinct points on line
l′, with l 6= l′. Then, the intersection points X = AB′ · A′B, Y =
AC ′ · A′C, and Z = BC ′ ·B′C are collinear.

There are two possible configurations of points in Pappus’s theorem.
In the one at the left, none of the points on the two lines are the point of
intersection of the lines. In the figure on the right, one of the points, A,
is the intersection point of the lines. Pappus’s Theorem can be proven
in this case, using results solely based on axioms P1-P4. This was shown
in exercise 9.4.4.
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In order to show that Pappus’s Theorem and axiom P7 are logically
equivalent, we will to carry out two proofs. We start by showing that
axioms P1-P4 and P7 imply Pappus’s Theorem.

Theorem 15.3. If one assumes axioms P1-P4 and axiom P7, then
Pappus’s Theorem is true.

Proof: We start with the assumption of Pappus’s Theorem. Let A, B,
C be three distinct points on line l and A′, B′, and C ′ be three distinct
points on line l′, with l 6= l′. By the comments above concerning the two
possible configurations of points in Pappus’s theorem, we can assume
that none of A,B, or C are on l′ and none of A′, B′, or C ′ are on l.
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Let X = AB′ ·A′B and Y = AC ′ ·
A′C. Then, neither of X nor Y is
on l or l′.
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Let m = XY , and let A′′ be
the intersection of m with AA′.
Then, ABC

A′

Z A′′XY
A
Z A′B′C ′.

Thus, there is a projectivity map-
ping ABC to A′B′C ′. Let P = l·l′

and Q = l′ · m. Then ABP
A′

Z

A′′XQ
A
Z A′B′Q.
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Now, let R = m · B′C, S =
l′ · BR and B′′ = m · BB′. Then,

ABP
B′

Z XB′′Q
B
Z A′B′Q. So, we

have two projectivities that both
take ABP to A′B′Q. It follows
from Axiom P7 (exercise 9.4.5)
that the two projectivities must
be the same on l.
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Consider point C. Under the first projectivity (from A′ and then A) C
goes to Y and then to C ′. Under the second projectivity (from B′ and
then from B) C goes to R and then to S. Thus, S = C ′ and←→BR =

←−→
BC ′.

Since R is on m, then R = BC ′ ·B′C is collinear with X and Y . 2
To show that axioms P1-P4 and Pappus’s Theorem imply axiom P7,

one also needs to assume axiom P6, Desargues Theorem. (In the exercises
for section 9.4, we proved that P6 can be proven from Pappus’s Theorem,
so this is not that much of an assumption.)

We first prove a series of lemmas showing that we can reduce the
number of perspectivities that make up a projectivity. Our exposition in
this section follows closely that of Hartshorne [12, Chapter 5]
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Lemma 15.4. Let l, m, and n be three lines. Suppose there is a

projectivity l
O
Zm

P
Z n. If the lines are concurrent at point X, then

there is a point R on ←→OP such that the perspectivity l
R
Z n exactly

matches the original projectivity.

Proof:

With the given assumptions let
A and B be two distinct points
on l. Let A

O
Z A′

P
Z A′′, with A′

on m and A′′ on n. Likewise,
let B

O
Z B′

P
Z B′′. Then, trian-

gles AA′A′′ and BB′B′′ are per-
spective from X. Thus, by De-
sargues Theorem we have that
AA′.BB′ = O, A′A′′.B′B′′ = P ,
and R = AA′′.BB′′ are collinear.
(Note that this argument works
even if l = n.)

Let C be a point distinct from A and B on l and let C
O
ZC ′

P
ZC ′′. Then,

by the reasoning above, we have that S = AA′′.CC ′′ and T = BB′′.CC ′′

are both on ←→OP . We conclude that the three lines AA′′, BB′′, and CC ′′
all intersect along the same line. Then, it must be the case that, either
at least two of these lines are the same line, or they are concurrent at a
single point (exercise).

No pair of the three lines can lie on the same line, for if they did, then
O would be on l. We conclude that R = S = T . Thus, the perspectivity
from R matches the projectivity, as C can be chosen arbitrarily on l. 2

Lemma 15.5. Let l, m, and n be three lines, with l 6= n. Suppose

there is a projectivity l
O
Zm

P
Z n. If the lines are not concurrent, and

X = l · n is invariant under the projectivity, then l is perspective to

n. That is, there is a point R such that l
R
Z n exactly matches the

original projectivity.
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Proof:

Let X = l · n, Y = l · m, and
Z = m · n. Also, let Q = m · PX
and R = PY ·OZ. Under the per-
spectivity from O, X goes to Q.
Since X must be invariant, then
Q

P
Z X, which implies that O,P ,

and X must be collinear.

Y

X

l

Z

m

n

P

O

Q

R

Let A be any point on l and
let A

O
Z A′, A′

P
Z A′′. Then, Y , A′,

and Z are three distinct points on
m, while O, X, and P are three
distinct points on XP . Applying
Pappus’s Theorem to these two
triples, we get that A = Y X ·OA′,
R = Y P ·OZ, and A′′ = A′P ·XZ
are collinear.
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Now, R is defined independent of the point A. So, for any A on l we
get that the line through R and A will yield the point A′′, which is the
result of the projectivity applied to A. Thus, the projectivity is the same
as the perspectivity from R. 2

Lemma 15.6. Let l, m, and n be three lines with l 6= n. Suppose

there is a projectivity l
O
Zm

P
Zn and let X = l ·n. If the lines are not

concurrent, and X = l · n is not invariant under the projectivity,
then there is a line m′ and points O′ on n and P ′ on l such that

l
O′

Z m′
P ′

Z n exactly matches the original projectivity.

Proof: If O is on n, then we choose O′ = O and m = m′. So, we assume
O is not on n. We know that O, P , and X are not collinear, for if they
were collinear, then X would be invariant under the projectivity. Let
O′ = OP · n. Then, O′ 6= X. Let A 6= X and B 6= X be points on l with
AB

O
ZA′B′

P
ZA′′B′′. Let A∗ = O′A ·PA′′ and B∗ = O′B ·PB′′ (Fig. 15.3).
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We know that A∗ 6= B∗, as if A∗ = B∗, then A and B would be on a
line containing O′, which is impossible.
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Figure 15.3

Consider the perspectivity from O′ on l. If A = A′, then the perspec-
tivity from O′ maps A to itself and then the perspectivity from P maps

A′ = A to A′′. Thus, A
O′

Z A′
P
Z A′′.

So, we assume that A 6= A′. We will show that neither A′ nor A
can equal A∗. Suppose that A∗ = A. Then, PA′ and OA′ must be the
same line, and so P = O. But, if P = O, then X is invariant under the
projectivity. So, A∗ 6= A. Suppose A∗ = A′. Then, O′A and OA are the
same line and O = O′. But, we are assuming that O is not on n. Thus,
A∗ 6= A.

So, AA′A∗ is a triangle. Let B 6= A 6= X be another point on l and
let B

O
ZB′

P
ZB′′. By the reasoning above BB′B∗ is a triangle.

Both of these triangles are perspective from line OP . Thus, by De-
sargues Theorem, they must be perspective from a point. It is clear that
this is the point Y = m.l. Let m∗ = A∗B∗ and let C be any other point
on l that is not X. Then, CC ′C∗ will again be a triangle perspective
from Y in comparison with AA′A∗. So, C∗ will be on m.

Then, l
O′

Zm∗
P
Zn matches the original projectivity everywhere but at

X. It will be left as an exercise to show that we can make our argument
work for the point X.
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A similar argument can be used to find P ′ andm′ such that l
O′

Zm′
P ′

Zn

matches l
O′

Z m∗
P
Z n. 2

The next result finishes our analysis of a projectivity built from two
perspectivities.

Lemma 15.7. Let l, m, and n be three lines with l 6= n. Suppose

there is a projectivity l
O
Zm

P
Zn and let X = l ·n. Let m′ 6= l be a line

distinct from m that passes through Y = l ·m. If l, m, and n are
not concurrent and X = l ·n is not invariant under the projectivity,

then there is a point O′ on OP such that l
O′

Zm′
P
Zn exactly matches

the original projectivity.

Proof: As in the previous lemma, we know that O, P , and X are not
collinear. Let A 6= Y be a point on l and let A

O
Z A′

P
Z A′′ for points A′

on m and A′′ on n. Let A∗ = PA′′.m′ (Fig. 15.4).

Figure 15.4

Since m′ is not m or l, we have that A 6= A∗ and A′ 6= A∗. Thus,
AA′A∗ is a triangle (even if A = X). Let B 6= A 6= Y be another point
on l. Then, BB′B∗ is a triangle. These two triangles are perspective from
Y . Thus, by Desargues Theorem, they are perspective from a line, which
must be OP . We conclude that O′ = AA∗.BB∗ is on OP . Let C be any
other point on l other than Y . Then, CC ′C∗ is a triangle perspective
from Y . By the argument just given, AA∗.CC∗ must be on OP , and so
AA∗.CC∗ = O′.
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Since C can be chosen arbitrarily, we conclude that l
O′

Zm′
P
Zn matches

l
O
Zm

P
Z n everywhere, except possibly at Y . However, the perspectivity

from O′ will fix Y , so l
O′

Z m′
P
Z n matches l

O
Zm

P
Z n at Y . 2

Note that this theorem has a symmetric counterpart. We could have
assumed that m′ 6= l was a line distinct from m that passes through
V = n ·m. Then, if l, m, and n are not concurrent and X = l · n is not
invariant under the projectivity, then there must be a point P ′ on OP

such that l
O
Zm′

P ′

Z n exactly matches the original projectivity.
We can now prove that a projectivity is essentially two perspectivi-

ties.

Theorem 15.8. A projectivity between two distinct lines can be
written as the composition of at most two perspectivities.

Proof: A projectivity is defined as the composition of a finite number
of perspectivities. Thus, it is enough to show that a projectivity that is
composed of three perspectivities can be written as the composition of
two, since we can then repeatedly reduce the original number of perspec-
tivities to at most two. (The original might be a single perspectivity)

We assume, then, that the given projectivity is l
P
Z m

Q

Z n
R
Z o, with

l 6= o. If l = n, then l
P
Zm

Q

Zn can be replaced by a single perspectivity, by

Lemma 15.4. Similarly, ifm = o, thenm
Q

Zn
R
Zo can be replaced by a single

perspectivity. The definition of a perspectivity implicitly assumes that
the two lines under the perspectivity are distinct, thus l 6= m, m 6= n,
and n 6= o. We conclude that we can assume that l, m, n, and o are all
distinct.

If l,m, n or m,n, o are concurrent, then we can reduce the three
perspectivities to two using Lemma 15.4. If L = l · n is invariant under

l
P
Z m

Q

Z n, or if M = m · o is invariant under m
Q

Z n
R
Z o, then we can

use Lemma 15.5 to reduce the three perspectivities to two. Thus, we can
assume that l,m, n and m,n, o are not concurrent and that the points L

andM defined above are not invariant under the perspectivities l
P
Zm

Q

Zn

and m
Q

Z n
R
Z o.

Now consider the case where l,m, o are concurrent. Let Y = l · m
and V = n ·m. By the dual to axiom P3, there must be some line m′
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through V that is different than o and that does not pass through Y .
By the note after Lemma 15.7, we know that there is a point Q′ of PQ

such that l
P
Zm′

Q′

Z n which preserves the original perspectivity from l to

n. So, we can equivalently consider the projectivity l
P
Zm′

Q′

Z n
R
Z o, where

l,m′, o are not concurrent.
If l, n, and o are concurrent, we could similarly find a line n′ through

U = n ·o that misses T = l ·n and point R′ on QR such that l
P
Zm′

Q′

Z n
R′

Z o

matches l
P
Zm′

Q′

Z n′
R
Z o.

So, we can assume that we have a projectivity l
P
Zm

Q

Zn
R
Zo with none

of {l,m, n}, {m,n, o}, {l,m, o}, nor {l, n, o} concurrent. Also, we can
assume that neither of the two intersection points L = l ·n or M = m · o
are invariant under their respective perspectivities, as if they were, then
we can use Lemma 15.5 to reduce the three perspectivities to two.

Using Lemma 15.6, we can assume that Q is on line o. This would
perhaps require a change in n. A quick look at the proof of the lemma
shows that this change in n does not affect point T = l ·n. Thus, it does
not change the non-concurrency of l, n, o. A change in n might affect
the assumptions about l,m, n and m,n, o being not concurrent, or it
might make L = l · n invariant. However, if either l,m, n or m,n, o are
concurrent, we could use Lemma 15.4 to reduce the three perspectivities
to two. Also, if L = l · n becomes invariant, we can use Lemma 15.5 to
reduce the three perspectivities to two.

So, we can assume that we have a projectivity l
P
Z m

Q

Z n
R
Z o with

none of {l,m, n}, {m,n, o}, {l,m, o}, nor {l, n, o} concurrent. Also, we
can assume that Q is on line o. Let Z = n · o and h = Y Z (Fig. 15.5).

Since Y is not on o, then Q is not on h. Let A and B be on l and let

AB
P
ZA′B′

Q

ZA′′B′′
R
ZA′′′B′′′. Since m, n, and o are not concurrent, then

h cannot be m or n. Thus, there is a perspectivity from Q mapping m

to h. Let H and J be on h such that A′B′
Q

ZHJ .
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Figure 15.5

Now, h 6= o, as l, m, and o are not concurrent. Likewise, h 6= l, as l,
n, and o are not concurrent. Thus, HA′′A′′′ and JB′′B′′′ are triangles, as
are AA′H and BB′J . We see that HA′′A′′′ and JB′′B′′′ are perspective
from Z. Thus, by Desargues Theorem, they are perspective from a line,
which must be QR. Thus, N = HA′′′ · JB′′′ is on QR. Similarly, AA′H
and BB′J are perspective from Y and soM = HA ·JB is on QP . Then,
AB

M
Z HJ

N
Z A′′′B′′′. If C is any other point on l, we would likewise get

C
M
Z K

N
Z C ′′′ for some K on h, because M has to be the point on QR

intersected by HA and N is the point on QR intersected by HA′′′ and
so are independent of C. We conclude that l

M
Z h

N
Z o matches the original

projectivity. 2
We can now complete the demonstration of the equivalence of Pap-

pus’s Theorem with Axiom P7 on projectivities.

Theorem 15.9. If we assume Axioms P1-P4 and Pappus’s Theo-
rem, then Axiom P7 holds. That is, a projectivity that leaves three
distinct points on a line invariant must be the identity.

Proof: Let π be the projectivity. Assume the projectivity leaves points
A, B, and C on line l invariant. There are two cases to consider —either
l has exactly three points or it has more than three points.

Case I: If l has exactly three points, then every line has exactly three
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points (exercise). By the dual to axiom P4, there is a line l′ 6= l. Let A′,
B′, and C ′ be points on l. We know that l and l′ intersect. We can assume
they intersect at A = A′. Let R = BB′ · CC ′. Then, R is not on l or l′,
and there is a perspectivity from R taking B and C to B′ and C ′. Let ρ
be the perspectivity. Now, consider the composition of ρ ◦ π. This gives
another projectivity mapping B and C to B′ and C ′. But if every line
has exactly three points, there is only one projectivity possible from l to
l′ mapping B and C to B′ and C ′ (exercise). Thus, ρ ◦ π = ρ. Since a
perspectivity is invertible, we get that π equals the identity.

Case II: If l has at least four points, say A, B, C, and D, then by the
dual to axiom P4, there is a line l′ through D that is not l, and thus does
not go through A, B, or C. We know by axiom P4 that there are at least
two other points A′ and B′ on l′ distinct from D. Let R = AA′ · BB′.
Then, R is not on l or l′, and there is a perspectivity from R taking A and
B to A′ and B′. This perspectivity maps C to some point C ′ on l′ other
than A′ or B′. Also, C ′ 6= D, as R is not on l. We have thus defined a
projectivity taking A,B,C to A′, B′, C ′. We claim that this projectivity
is unique. Suppose there was a second projectivity mapping A, B, and
C to A′, B′, and C ′. If this second projectivity is a perspectivity, then
it would have to be the perspectivity from R.

If the second projectivity is made up of two or more perspectivities,
then we know by the preceding theorem that it can be written as the

composition of two perspectivities, say l
O′

Z l′′
O
Z l′. If D = l · l′ is invariant

under the projectivity l
O′

Z l′′
O
Z l′, then by Lemma 15.5, we know that

the projectivity is the same as a perspectivity, and thus must be the
perspectivity from R.

So, we can assume that D is not
invariant under the projectivity,
and by Lemma 15.6, we can as-
sume that O is on l and O′ is
on l′. We have ABC

O′

Z A′′B′′C ′′
O
Z

A′B′C ′. Applying Pappus’s Theo-
rem to A,B,O on l and A′, B′, O′
on l′, we have M = AB′ · A′B,
A′′ = AO′ · A′O, and B′′ = BO′ ·
B′O are collinear. Thus, M is on
l′′ = A′′B′′. Likewise, N = AC ′ ·
A′C is on l′′.

l
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In the proof of Theorem 9.6, the line through M and N was exactly the

line used for the construction of the projectivity l
A′

Z l′′
A
Z l′. All that is

left to show is that every point X on l that goes to the point X ′ on l′

via l
O′

Z l′′
O
Z l′ will also go to X ′ by l

A′

Z l′′
A
Z l′. Applying Pappus’s Theorem

to AXO and A′X ′O′ we get that A′′, X ′′, and AX ′ · A′C are collinear,

so AX ′ · A′C is on l′′, and thus l
A′

Z l′′
A
Z l′ maps X to X ′.

Now, l′′ = MN with M = AB′ · A′B and N = AC ′ · A′C. So, we
have shown that every projectivity mapping A, B, and C to A′, B′, and

C ′ is equivalent to l
A′

Z l′′
A
Z l′, which only depends on A, B, C, A′, B′, and

C ′. Thus, there is a unique projectivity taking A,B,C on l to A′, B′, C ′
on l′. The rest of the proof follows much like it did in Case I where all
lines had three points and will be left as an exercise. 2

Exercise 15.1.1. Show that the set of projectivities of a line l into itself
forms a group. Refer to Exercise 5.6.5 for the definition of a group.

Exercise 15.1.2. Prove that if one assumes axioms P1-P4, and Papus’s
Theorem, then if two projectivities between pencils of lines with centers O and
O′ both have the same values on three distinct lines a, b, and c through O,
then the projectivities must be the same on the pencil of lines at O.

Exercise 15.1.3. Suppose three lines all intersect along the same line. Prove
that either at least two of the lines are the same line or they are concurrent
at a single point.

Exercise 15.1.4. Finish the proof of Lemma 15.6. That is, show that the
argument given at the end of the proof works for the point X = l · n.

Exercise 15.1.5. Assuming axioms P1-P4, show that if there exists a line
with exactly three points, then every line has exactly three points. [Hint: Sup-
pose there was another line with four points. Define a perspectivity to reach a
contradiction.]

Exercise 15.1.6. Assume axioms P1-P4 and assume that every line has
exactly three points. Let l and l′ be distinct lines with A, B, and C on l and
A′, B′, and C ′ on l′. Show that there is only one projectivity possible from l
to l′ that takes A, B, and C to A′, B′, and C ′.

Exercise 15.1.7. Finish the last part of the proof of Theorem 15.9. That is,
show that if there is a unique projectivity mapping distinct points A, B, and
C on line l to distinct points A′, B′, C ′ on line l′ 6= l, then a projectivity that
leaves three distinct points on a line invariant must be the identity.
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15.2 HOMOGENEOUS COORDINATES AND TRANSFORMA-
TIONS IN THE REAL PROJECTIVE PLANE

To define the Real Projective plane, we need the definition of points at
infinity and the line at infinity.

Definition 15.5. Let l be a Euclidean line and let [l] represent the
set of all Euclidean lines that are parallel to l. Then, we define [l]
to be an ideal point or a point at infinity. The set of all ideal points
is called the line at infinity. Given a Euclidean line l, we define the
extended line through l to be the set consisting of the points of l
plus [l].

The Real Projective plane consists of all ordinary Euclidean points
plus all ideal points. Real projective lines consist of all extended Eu-
clidean lines plus the line at infinity.

In the three dimensional model of the Real Projective Plane, we
interpret the two dimensional points of the Euclidean plane as three
dimensional points with z-coordinate equal to 1.

Given a Euclidean point (x, y) we
identify this point with the point
(x, y, 1). An ordinary Euclidean
line will then be identified with
the corresponding line at height 1.

z

x

y

z=1

(x,y)

(x,y,1)

l

l’

There is a 1–1 relationship be-
tween points (x, y, 1) and lines
passing through the origin and
these points. Also, there is a simi-
lar relationship between lines l′ in
the z = 1 plane (labeled π in the
figure) and planes through the ori-
gin and l′.

z

x

y

(x,y)

(x,y,1)

l

l’π
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We can identify the ordinary points of the Real Projective Plane with
points (x, y, 1), or equivalently with any point along the line k(x, y, 1).
For ideal points, as a point moves farther and farther from the z-axis, the
slope of the line through the origin and that point will decrease. In the
“limit,” this line will approach a line in the x-y plane. Thus, points at
infinity can be identified with lines through the origin with z-coordinate
equal to zero.

We can use homogeneous coordinates to analytically capture proper-
ties of points and lines in the Real Projective plane. .

Definition 15.6. Homogeneous coordinates (x1, x2, x3) for an or-
dinary Euclidean point P = (x, y) are a choice of x1, x2, x3 such
that x1

x3
= x and x2

x3
= y. One such representation is (x, y, 1). Ho-

mogeneous coordinates of the form (x1, x2, 0) represent points at
infinity.

The 3-D model of the Real Projective Plane uses this homogeneous
representation of points and lines.

Definition 15.7. The points of the 3-D model include all non-zero
homogeneous coordinate vectors v = (x, y, z). The lines of the 3-D
model include all non-zero homogeneous planar vectors [a, b, c]. A
point v = (x, y, z) is on a line u = [a, b, c] iff ax+ by+ cz = 0. That
is, if the dot product u · v = 0.

For the 3-D model we will think of vectors for lines [a, b, c] as row
vectors and vectors for points (x, y, z) as column vectors. Then, u · v can
be thought of as a matrix multiplication.

15.2.1 Transformations

In section 9.5 we used homogeneous coordinates to parameterize points
on a line. We proved the following:
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Theorem 15.10. Let P = (p1, p2, p3) and Q = (q1, q2, q3) be two
distinct points with homogeneous coordinates in the Real Projective
Plane. Let X = (x1, x2, x3) be any point on the line through P and
Q. Then, X can be represented as X = αP+βQ = (αp1+βq1, αp2+
βq2, αp3 +βq3), with α and β real constants, with at least one being
non-zero. Conversely, if X = αP + βQ, with at least one of α and
β not zero, then X is on the line through P and Q.

Definition 15.8. The coordinates (α, β) are called homogeneous
parameters or parametric homogeneous coordinates of the point X
with respect to the base points P and Q.

Homogeneous parameters of a point are not unique. Any multiple
of a given homogeneous representation, say (α, β) is equivalent to any
non-zero scalar multiple of that representation (λα, λβ). What is unique
is the ratio of the two parameters α

β
.

Definition 15.9. Given homogeneous parameters (α, β) of the
point X with respect to the base points P and Q, the ratio α

β
is

called the parameter of the point.

A projectivity has a homogeneous coordinate representation.

Theorem 15.11. Given a projectivity l Z l′, with l and l′ distinct.
Let P and Q be points on l with PQZP ′Q′. Let X be on l with
coordinates (α, β) with respect to P and Q. Let X ′ be the point
on l′ with PQXZP ′Q′X ′, and let X ′ have coordinates (α′, β′) with
respect to points P ′ and Q′. Then, the projectivity, as a mapping of
points on l, can be represented by a matrix equation of the form:

λ

[
α′

β′

]
=
[
a b
c d

] [
α
β

]

where the determinant ad− bc 6= 0 and λ 6= 0.
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The converse to the above result also holds – every non-singular
2x2 matrix generates a projectivity with respect to local homogeneous
coordinates.

Theorem 15.12. Let P and Q be distinct points on l and let P ′,
Q′ distinct points on l′. Let X be a point on l with parametric ho-
mogeneous coordinates (α, β) with respect to P and Q, and let the

homogeneous coordinates of a point X ′ on l′ be (α′, β′). Let
[
a b
c d

]
be a matrix with ad− bc 6= 0. Then, the transformation of l into l′
defined by the matrix equation:[

α′

β′

]
=
[
a b
c d

] [
α
β

]

defines a projectivity from l to l′.

The proofs of these theorems can be found in section 9.5.
A projectivity maps a line to another line. A collineation is a map of

the entire projective plane to itself.

Definition 15.10. A collineation is a 1-1 and onto transformation
of the Real Projective Plane to itself that maps lines to lines and
preserves intersections of lines.

Theorem 15.13. A collineation can be represented by a matrix
equation of the form λX ′ = AX where A is a 3x3 matrix with
non-zero determinant and λ 6= 0.

Collineations were shown to have an interesting connection with com-
plete quadrangles. A complete quadrangle consists of four distinct points,
no three of which are collinear.

Theorem 15.14. There exists a unique collineation that takes the
four points of a complete quadrangle to any other four points of
another complete quadrangle.

While the proof of the Fundamental Theorem of Projective Geometry
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presented in section 9.5 is based on using homogeneous coordinates in
the Real Projective Plane, the result actually holds for any abstract
Projective geometry that satisfies Fano’s axiom and Pappus’s Theorem.
A proof of this result can be found in [11][Chapter 8].

So far in this chapter, perspectivities can be maps from a pencil of
points on one line to a pencil of points on another, or from a pencil of
lines on one point to a pencil of points on another (Fig. 15.6.)

O

l

l’

A
B

C

A’ B’ C’

O O’

l

a

b

c

a’

b’

c’

Perspectivity for
   pencils of points

Perspectivity for
   pencils of lines

Figure 15.6

There is a third type of perspectivity —that of a pencil of points to
a pencil of lines, or vice-versa.

Definition 15.11. A perspectivity with center O and axis l is a
1-1 mapping of a pencil of points with axis l to a pencil of lines
with center O such that if P on l is mapped to p through O, then p
passes through P .

Here we have an illustration of a
perspectivity of this third type.
Lines p, q, and r are mapped to
points P , Q, and R.

O

P

p
q

R

r

Q

O

P

R
Q

If we are careful with the choice of homogeneous coordinates for lines
and points, we can synchronize the coordinates for a perspectivity from
a pencil of points to a pencil of lines.
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Theorem 15.15. Given a perspectivity with center O and axis l,
we can choose homogeneous coordinates for the pencil of points on
l and the pencil of lines through O so that the same coordinates can
represent both sets.

Proof:

Let P and Q be points on l and let
p and q be the corresponding lines
through O. Choose P and Q as
the base points for homogeneous
coordinates on l and choose p and
q as base lines for homogeneous
coordinates for lines through O.

O

P

p
q

X

x

Q

O

P

X
Q

Then, the coordinates (1, 0) will represent P on l and will also rep-
resent p for the pencil of lines at O. Likewise, (0, 1) will represent Q
and q. Consider the line x = αp+ βq. We will show that the point with
coordinates X = αP + βQ on l is also on x.

We know that the vector p represents the normal vector to the plane
through the origin containing vectors P and O. Thus, p · P = 0 and p
can be chosen as P ×O. Likewise, q ·Q = 0 and q = Q×O. We need to
show that x ·X = 0.

We have

x ·X = (αp+ βq) · (αP + βQ)
= α2(p · P ) + αβ(p ·Q+ q · P ) + β2(q ·Q)
= αβ(p ·Q+ q · P )
= αβ[(P ×O) ·Q) + (Q×O) · P ]

Now, (U × V ) ·W is the triple product of the vectors U , V , and W .
By the properties of the triple product, if we reverse the first and last
vectors, the triple product reverses sign. Thus, we get x ·X = αβ(P ×
O) ·Q− (P ×O) ·Q = 0.

2

Exercise 15.2.1. Let a collineation be represented by the 3x3 matrix A.
Let u = [u1, u2, u3] be the coordinate representation of a line. Show that the
image of u under the collineation has coordinates ku′ = uA−1, where A−1 is
the inverse to A. [Hint: Let line u have equation uX = 0 and u′ have equation
u′X ′ = 0. Note that X goes to sX ′ = AX.]
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Exercise 15.2.2. Let P = (1, 3, 1), Q = (0, 1, 1), R = (3, 0, 1), and S =
(4, 2, 1). Show that PQRS is a complete quadrangle.

Exercise 15.2.3. Show that a collineation has at least one invariant point
and one invariant line. [Hint: Consider the eigenvalues for the matrix repre-
senting the collineation.]

Definition 15.12. A collineation is called a perspective collineation
if there exists a unique line for which every point on the line is fixed
by the collineation. This line is called the axis of the collineation.

Exercise 15.2.4. Show that a perspective collineation can have at most one
invariant point that is not on its axis. [Hint: Use Theorem 15.14.]

Exercise 15.2.5. Given a perspective collineation, prove that there is a
unique point C with the property that every line through C is invariant under
the collineation. [Hint: There are two cases: either an invariant point exists off
the axis, or invariant points are only on the axis. In the second case, let P be
a point not on the axis (l) and let P ′ be the image of P under the collineation.
Let m = PP ′ and let C = l ·m. Show that C is the desired point.]

Definition 15.13. Given a perspective collineation, the point C
from Exercise 15.2.5 is called the center of the collineation.

Definition 15.14. A non-identity perspective collineation is called
an elation if its center lies on its axis. The collineation is called a
homology if its center does not lie on its axis.

Exercise 15.2.6. Show that every Euclidean reflection is a homology, when
considered as a collineation in the Real Projective Plane (the Euclidean plane
plus all points at infinity).

Exercise 15.2.7. Show that every Euclidean translation (with nonzero di-
rection vector) is an elation, when considered as a collineation in the Real
Projective Plane (the Euclidean plane plus all points at infinity).

Exercise 15.2.8. Show that a Euclidean rotation, that is not the identity or
a half-turn, is not a perspective collineation, when considered as a collineation
in the Real Projective Plane (the Euclidean plane plus all points at infinity).
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15.3 PROJECT 21 - INTRODUCTION TO CONICS

In this Project we will see that the analog of circles in Projective
geometry is the idea of conic sections. These include all of the traditional
sections of the cone – the circle, ellipse, hyperbola, and parabola.

Figure 15.7 Conic Sections - from MathWorld–A Wolfram Web Resource
[18]

In Projective geometry, these are all equivalent figures under the ap-
propriate projective transformation. Conic sections will be defined using
properties of projective transformations. This might seem a bit strange,
but there is a nice analog in Euclidean geometry where we can construct
conic sections via isometries. This was covered briefly at the start of
section 9.8. In this project we develop this idea in much more detail.

15.3.1 Euclidean Conic Sections Generated by Isometries

The pencil of points with axis l is the set of all points on l. The pencil of
lines with center O is the set of all lines through point O. We have been
using this terminology frequently in our study of Projective geometry,
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but in this section we will assume that pencils of points and lines consist
solely of Euclidean points and lines.

We will be concerned with how pencils of points and lines are trans-
formed under isometries. Consider how the pencil of lines with center O
is transformed under the composition of two Euclidean isometries.

For example, let r be the re-
flection isometry across line ←→AB
as shown. Consider the pencil of
lines with center O. Under the
isometry r, one of these lines, say
←→
OP , will map to

←−→
O′P , where P is

the intersection point of the lines
on ←→AB and r(O) = O′. We say
that←→OP and

←−→
O′P are correspond-

ing lines under the transformation
r.

A

B

O

P
QR

O’

S

Now, consider the set of all intersection points of corresponding lines.
These would include points P , Q, and R as shown above. This set of
points is the locus of the points of intersection of corresponding lines of
two pencils (the one at O and the one at O′) that are related by the
reflection r.

Definition 15.15. A set of points is called a locus of points if
each point in the set satisfies some geometric condition. A point
is a member of the locus of points if and only if it satisfies the
condition.

In the previous example, a point is in the locus of points if it satisfies
the condition that it is a point of intersection of corresponding lines of
the two pencils. Clearly, this set of points is the line ←→AB. There is one
unique line which does not generate an element in this locus – the line←→
OS which is parallel to ←→AB at O. However, if we consider this example
in the extended Euclidean plane, with points at infinity attached, then←→
OS and r(←→OS) will intersect at a point at infinity, which we would then
have to add to the locus of points.

Exercise 15.3.1. Show that the locus of points of intersection of corre-
sponding lines of two pencils that are related by a translation T consists of
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no ordinary Euclidean points, but consists entirely of points at infinity. We
consider this the line at infinity.

So far we have constructed loci of points under reflections and trans-
lations and these loci turn out to be lines. While not one of the standard
conic sections, a line is still a section of the cone, a so-called degenerate
conic section.

Now let’s see how we can construct a particular conic section, the
circle, as a locus of points.

The Circle as a Locus under Two Reflections

Start up your dynamic geometry
software. Construct point O to
serve as the center for a pencil of
lines. Construct a small circle cen-
tered at O with radius point R.

O R

P

For ease of viewing, we have changed the drawing style of the circle to
be dashed. To do this choose. Attach point P to the circle and construct←→
OP . By moving point P we can generate all of the different possible lines
in the pencil of lines at O.

Next we create two lines ←→AB and←→
CD to serve as two lines of reflec-
tion. Make these dashed lines and
set ←→AB as a line of reflection.

O
R

P

A

B
C

D

m
O’

O’’

Select ←→AB and then reflect this line. Line m is the reflected line. Select
O and reflect this as well, creating point O′.
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Now, we will carry out the sec-
ond reflection. Set ←→CD as a line
of reflection and reflect m across
this line to create line n. Also, re-
flect O′ to point O′′. Let f be the
isometry that is the composition
of these two reflections. Under f
line←→OP , from the pencil of lines at
O, is mapped to line n, from the
pencil of lines at O′′. Construct
the intersection X of ←→OP and n.

O
R

P

A

B
C

D

m
n

X

O’

O’’

Now, consider the locus of points of intersection of corresponding
lines of the two pencils at O and O′′. This will be precisely the set of
points generated from positions that X takes on as we move point P .
Move point P around the circle at O and see what happens to X. It
appears to sweep out a circle!

Consult the documentation on
constructing loci for your dy-
namic geometry software. Then,
construct the locus of points for
X based on positions for P on the
circle. It certainly appears that
the locus is a circle.

O
R

P

A

B
C

D

m
n

X

O’

O’’

Let’s prove that the locus is actually a circle.

Undo the locus construction.
Construct the point of intersec-
tion E of the two lines of re-
flection. This point will be in
the desired locus. Next construct
EO and EO′′. Select these two
segments and construct the mid-
points (F and G) of each.

OR

P

A

B

C

D

mn

X

O’

O’’

E

F

G

k
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Next construct the perpendic-
ular to EO at F . Likewise con-
struct the perpendicular to EO′′
at G, and then construct H, the
intersection point of these two
perpendiculars. Finally, construct
the circle k with center H and ra-
dius point E.

OR

P

A

B

C

D

mn

X

O’

O’’

E

F

G

H

k

We know from our work in Project 2.2 that the perpendicular bi-
sectors of the sides of a triangle intersect at a common point called the
circumcenter of the triangle. The circle k constructed above, with center
at the circumcenter and radius point E, will be the circumscribed circle
of the triangle, and thus must pass through O and O′′.

Exercise 15.3.2. Show that the measure of ∠OEO′′ is twice the measure of
∠AEC and that the measure of ∠OEO′′ is one-half the measure of ∠OHO′′.

Measure ∠OEO′′, ∠AEC, and ∠OHO′′ to verify the angle relation-
ships stated in the previous exercise.

From Exercise 5.4.7 in Chapter 5, we know that the measure of the
vertical angle at X made by←→OP and n must equal the angle of rotation.
Thus, the measure of ∠OXO′′ equals the measure of ∠OEO′′ , and thus
the the measure of ∠OXO′′ is one-half the measure of central angle
∠OHO′′. By Theorem 2.42 the point X must be on the circle k. We
therefore have proved the following:

Theorem 15.16. Let ←→AB and ←→CD be intersecting lines in the
plane. Let r1 and r2 be reflections across these lines. Let O′′ =
r2(r1(O)). Then, the locus of points of intersection of correspond-
ing lines of the two pencils at O and O′′ forms a circle.

Glide Reflections and Hyperbolas

We have considered the locus of points of intersection of corresponding
lines of two pencils of lines under three types of isometries - reflections,
translations, and rotations. What happens if we use a glide reflection as



198 � Exploring Geometry - Web Chapters

our isometry? A glide reflection is composed of a reflection across a line
followed by a translation in a direction parallel to a line.

As in the last exploration, con-
struct a point O to serve as the
center for a pencil of lines. Con-
struct a small circle centered at O
with radius point R. Attach point
P to the circle and construct←→OP .
Create←→AB, set←→AB as a line of re-
flection, and reflect←→OP to get line
m.

O
R

B

A

P

m

Next attach a point C to ←→AB
and define the translation vector−−→
CB.

O
R

B

A

C

P

m

We have defined a translation
that will be parallel to ←→AB and
will serve as the translation for
our glide reflection. Select line m
and translate it, creating line n.
Construct the intersection point
X of line n with ←→OP .

O
R

B

A

C

P

mn

X
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The locus of points of intersec-
tion of corresponding lines will be
the set of points generated from
positions that X takes on as we
move point P . Construct this lo-
cus and move point P around the
circle at O to generate a trace of
the locus. It appears to sweep out
a hyperbola!

O
R

B

A

C

P

mn

X

To see why the locus is a hyperbola, we will consider a coordinate
representation of the glide reflection and the pencil of points. We can
assume the line of reflection is the x-axis. Then, the glide can be written
as g(x, y) = (x + v,−y), for some non-zero v. We can assume that we
have chosen the origin so that the pencil of points can be represented
as the set of lines through O = (0, b). These lines have the form y =
mx− b, or (x,mx− b) as ordered pairs. Under the glide, these lines go
to (x + v,−mx + b). A shift in the x direction yields the transformed
lines as (x,−m(x− v) + b) = (x,−mx+mv + b).

To find the locus point, we find the intersection of these lines. Thus,
we have mx− b = −mx+mv+ b, or 2mx = mv+ 2b. Thus, x = v

2 + b
m .

Solving for y in y = mx− b, we get y = mv
2 . Let a = v

2 , which will be a
constant. Then,

y(x− a) = (mv2 )(v2 + b

m
− v

2) = (mv2 )( b
m

) = vb

2 .

We conclude that the coordinates for X satisfy an equation of the form
y(x−a) = c, where a and c are constants. This is the coordinate equation
for a hyperbola.

Envelopes of Lines for Pencils of Points

So far we have looked at how pencils of lines can be used to create locus
sets of points that generate conic sections. In the spirit of duality, we
now look at how pencils of points can lead to envelope sets of lines.
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Definition 15.16. A set of lines is called an envelope of lines if
each line in the set satisfies some geometric condition. A line is a
member of the envelope of lines if and only if it satisfies the condi-
tion.

The envelope of a set of lines is dual to the concept of a locus of
points. We describe the curve associated to a locus of points as the
figure created by the points. Earlier in this section, we constructed loci
that generated circles and hyperbolas. In this section, we will consider
curves generated by envelopes of lines. To be precise, we will say that a
curve c is generated by an envelope of lines if, for every point P on c,
we have that there is a tangent line to the curve at P and this tangent
line is a member of the envelope of lines.

In the last section, we looked at loci of points generated from pencils
of lines, where the lines are transformed by compositions of two isome-
tries. In this section we look at envelopes of lines generated from corre-
sponding points of pencils of points, where the points are transformed
by compositions of two isometries.

Recall that the pencil of points on a line l is just the set of all
points on l. Starting with a pencil of points, we consider how that pencil
transforms under two Euclidean isometries and then look at the envelope
of lines constructed from corresponding points.

We know from our work in Chapter 5 that the composition of two
isometries will be equivalent to a rotation, a reflection, a translation, or a
glide reflection. In our analysis of envelopes of lines, we will not consider
all possible compositions of two isometries, but will consider only one
case as an example – the case where two reflections can be composed to
create a rotation. For the reflections to create a rotation, the reflection
lines must intersect.
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Construct o =←→OQ to serve as the
“center” for a pencil of points. At-
tach a point P to o. P serves as
a representative of the pencil of
points on o. Create ←→AB, set ←→AB
as a line of reflection, and reflect
P to get P ′ and line o to get o′.
Then, create←→CD, set←→CD as a line
of reflection, and reflect P ′ to get
P ′′ and line o′ to get o′′.

O

Q o

A

BC

D

P

P’

P’’

o’

o’’

Points P and P ′′ are corresponding points of the two pencils of lines
from o and o′′. In the previous section of this project, we considered the
locus of points of intersection of corresponding lines of two pencils of
lines. The dual of this will be to consider the envelope of lines created
from corresponding points of two pencils of points.

Create the line
←−→
PP ′′ based on cor-

responding points P and P ′′. To
construct the envelope of lines,
construct the locus of lines gener-
ated from

←−→
PP ′′ as P moves along

line o. It appears that the en-
velope of lines generates or en-
velops another conic section —the
parabola.

O

Q o

A

BC

D

P

P’

P’’

o’

o’’

By using properties of rotations from section 5.4, and triangle con-
gruence results, one can show that the envelope of lines in this case is
the envelope of tangent lines to a parabola that has focus point at the
intersection of ←→AB and ←→CD . You can do the proof for extra credit for
this project.

15.3.2 Projective Conic Sections Generated by Projectivities

In this section we will see how conics in projective geometry are con-
structed using properties of projective transformations. The construction
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will be very similar to our work in the preceding parts of this project
– the only difference will be the type of transformations used in the
construction.

In section 9.4 we saw that the projective transformations that worked
similarly to isometries in Euclidean geometry were the projectivities. A
projectivity is a transformation that can be expressed as a finite compo-
sition of perspectivities. By Theorem 9.12 we know that any projectivity
is equivalent to the composition of at most two perspectivities.

Proceeding by analogy to the work we did earlier in this project on
conics in Euclidean geometry, we will consider the locus of points that
is generated from corresponding points of pencils of lines, when such
pencils are transformed by the composition of two perspectivities.

To explore these ideas we will use the Real model of Projective ge-
ometry, excluding the points at infinity. This model can be identified
with the standard Euclidean plane. Our exploration can then be carried
out using the Euclidean geometry features of your dynamic geometry
software.

Our first exploration will be concerned with the effect of two per-
spectivities on a pencil of lines through a point O.

Create point O to serve as the
center for our pencil of points.
Construct a small circle at O with
radius point R. Attach point P to
the circle and construct ←→OP . As
we move P we sweep out the pen-
cil of lines at O.

O
R

P

Recall that a perspectivity
with axis l between a pencil of
lines with center O and a pencil of
points with center O′ is a transfor-
mation that maps a line a through
O to a line a′ through O′ such that
the intersection of a and a′ lies on
l. We denote the perspectivity by
a
l
Z a′.

O
O’

l

a
a’

c c’

b’b
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We need to create a sequence
of two perspectivities. We create
the first perspectivity by creat-
ing a point O′ and an axis line
l1. We have edited the style of l1
for ease of viewing. Construct the
intersection point F of ←→OP and
l1. Then, construct

←−→
O′F . Then,

←→
OP

l1
Z
←−→
O′F .

O
R

P

D

E
l1

F

O’

Define the second perspectiv-
ity by creating a point O′′ and
a second axis line l2. Construct
the intersection point G of

←−→
O′F

and l2. Construct
←−→
O′′G so that

←−→
O′F

l2
Z
←−→
O′′G. The corresponding

lines under the composition of the
two perspectivities will be ←→OP
and
←−→
O′′G. Let X be the intersec-

tion of these lines.

O
R

P

l1

F

O’

l2
G

O’’

We now construct the locus
of points of corresponding lines of
the two pencils at O and O′′. This
will be the locus of positions forX
as point P moves around the cir-
cle. In this case, the locus appears
to be an ellipse!

O
R

P

l1

F

O’

l2
G

O’’

X
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If we move point O′ around,
the locus changes dramatically. In
this position it looks a bit like a
hyperbola, although there may be
extraneous lines. This is because
of the way some geometry pro-
grams connect the sample points
of the locus.

O
R

P

l1

F

O’

l2

O’’

X

For a better sense of the locus
in this case, hide the locus and put
a trace on point X. Move point P
around the circle at O to generate
the locus. It now does appear to
sweep out a hyperbola!

O

R

P

l1

F

O’

l2

O’’

X

Exercise 15.3.3. Show that if l1 and l2 are the same line in the construction
above, then the locus of points is a line.

Exercise 15.3.4. The line
←−→
OO′′ must be a member of the pencil at O and

the pencil at O′′. Use this to show that points O and O′′ must be on the locus
of points.

Our exploration provides strong evidence that the locus of points
that is generated from corresponding points of pencils of lines, when
such pencils are transformed by the composition of two perspectivities,
yields a conic section. In section 9.8, we proved this result rigorously in
the Real Projective Plane model of projective geometry.

For your report give a careful and complete summary of your work
done on this project.

15.4 CONICS AND TANGENTS
In Project 15.2.1 we saw that a conic section could be constructed from
corresponding points of two pencils of lines, where one pencil is trans-
formed into the other by the composition of two perspectivities, i.e by



Foundations of Projective Geometry � 205

a projectivity. Given this result, it is reasonable to define conics in ax-
iomatic projective geometry in a similar way. The axioms we assume will
be P1-P7 as described earlier in this chapter. Our development in this
section follows closely the work of W. T. Fishback in [9].

15.4.1 Point and Line Conics

Definition 15.17. A point conic is the locus of points of intersec-
tion of corresponding lines of two pencils of lines, where the first
pencil is transformed to the second by a projectivity. If the projec-
tivity is equivalent to a single perspectivity, or if the centers of the
pencils are the same point, the point conic will be called singular.
Otherwise, the point conic is called non-singular.

Here we have a non-degenerate
point conic defined by a projectiv-
ity between pencils of lines at O
and O′. For example, lines l and
l′ are projectively related, so their
intersection point X is on the
point conic. Note that for some
line m through O, there will be
a corresponding line m′ through
O′ that meets m at O. Likewise,
there is some line n′ through O′

that corresponds to line n = m′

through O.

O O’

n’

m’=n

ll’

m

X

From the figure, it appears that the centers of the two pencils lies on
the point conic. This is always the case. Our definition of point conics
splits the family of possible conics into two groups – the singular point
conics and the non-singular point conics. We summarize below the major
results on point (and line) conics. The proofs can be found in section 9.8
of Chapter 9.

Theorem 15.17. The possible singular point conics include the fol-
lowing: the entire Projective plane, the set of points on two distinct
lines, the set of points on a single line, and a single point.
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Singular point conics can consist of subsets that are lines. This is not
the case for non-singular point conics.

Theorem 15.18. There are at most two distinct points of a non-
singular point conic that lie on a given line.

The next theorem tells us how to recognize when a set of points lies
on a non-singular point conic.

Theorem 15.19. Let A, B, C, D, E, and F be distinct points such
that no subset of three of the six points is collinear. Let P be the
intersection of ←→AE with ←→CF , Q the intersection of ←→AD with ←→CB,
and R the intersection of ←→BE with ←→DF . Then C, D, E, and F
are on a non-singular point conic determined by projectively related
pencils of lines at A and B if and only if P , Q, and R are collinear.

This theorem is a re-statement of one of the most famous theorems
in geometry – Pascal’s Theorem.

In the statement of Theorem 9.42
we looked at intersections of cer-
tain lines. If we take these lines
and list them in the order where
vertices match we have a six-sided
figure —a hexagon. The hexagon
is defined by ←→AE, ←→EB, ←→BC, ←→CF ,←→
FD, and ←→DA.

B

C

A

D

E

F

P

Q

R

L
M

N

K

Of course, this hexagon is not
made up of segments, but lines.
How are the intersections cho-
sen? Here we have “unwrapped”
the hexagon into a more stan-
dard configuration., A quick check
of the intersections from Theo-
rem 9.42 shows that we are choos-
ing opposite sides of the hexagon
for intersections.

A E

B

CF

D

Pascal’s Theorem in its classical form is as follows:
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Theorem 15.20. (Pascal’s Theorem) If a hexagon is inscribed in
a non-singular conic, then points of intersection of opposite sides
are collinear.

Pascal’s Theorem leads directly to one of the key results in the the-
ory of conics, first discovered by Jakob Steiner (1796-1963), who did
pioneering work in the foundations of projective geometry.

Theorem 15.21. (Steiner’s Theorem) A non-singular point conic
can be defined as the locus of points of intersection of two projec-
tively related pencils of lines with centers at two arbitrarily chosen
(distinct) points on the conic.

Steiner’s Theorem leads to the following existence result for point
conics.

Theorem 15.22. Let A, B, C, D, and E be distinct points, no
three of which are collinear. Then, there exists a unique non-singular
point conic passing through these five points.

The dual to a point conic is a line conic.

Definition 15.18. A line conic is the envelope of lines defined by
corresponding points of two pencils of points, where the first pencil
is transformed to the second by a projectivity. If the projectivity is
equivalent to a single perspectivity, or if the axes of the pencils are
the same line, the line conic will be called singular. Otherwise, the
line conic is called non-singular.



208 � Exploring Geometry - Web Chapters

Here we have a non-degenerate
line conic defined by a projectiv-
ity between pencils of points on l
and l′. For example, points P and
P ′ are projectively related, so the
line
←−→
PP ′ is on the line conic. Note

that for some point M on l, there
will be a corresponding point M ′
on l′ such that M ′ is on l. Like-
wise, there is some point N ′ on l′
that corresponds to pointN = M ′

on l.

M

l

N

l’

P

P’

M’=N

Q

Q’

In the example above, we have shaded in an ellipse for reference pur-
poses to help visualize the line conic. Here a few duals to the Theorems
we have already proven for point conics.

Theorem 15.23. The axes of the pencils that define a line conic
always lie on the line conic.

Theorem 15.24. The possible singular line conics include the fol-
lowing: the entire Projective plane, the set of lines on two distinct
points, the set of lines on a single point, and a single line.

Theorem 15.25. There are at most two distinct lines of a non-
singular line conic that pass through a given point.

Theorem 15.26. (Dual to Pascal’s Theorem) If a, b, c, d, e, and
f are six distinct lines in a non-singular line conic, then the lines
defined by joining opposite vertices are concurrent.

A vertex is the intersection point of adjacent lines. For example,
one vertex would be the intersection of a and b. The dual to Pascal’s
Theorem is known as Brianchon’s Theorem, in honor of J. C. Brianchon
(1785-1864).
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15.4.2 Tangents

The case where a line intersects a non-singular point conic at a single
point will be important enough to have its own definition.

Definition 15.19. A line is a tangent line to a non-singular point
conic if it intersects the conic in exactly one point.

The existence of tangents was proven in section 9.8.

Theorem 15.27. At each point on a non-singular point conic there
is a unique tangent line.

An interesting fact about tangents and Pascal’s Theorem, is that we
can replace pairs of edges with tangents and still have the conclusion of
that theorem.

In the statement of Pascal’s The-
orem (or Theorem 9.42), we have
hexagon AEBCFD inscribed in
a point conic. Consider what hap-
pens to the lines of this hexagon
as we move point A to E and
point B to C. The edges rotate
into what seems to be the tangent
lines at A = E and B = C.

AB

C

DE

F

P
Q

N

M

R

L

Here is a picture of what the
lines and intersections look like af-
ter we replace the edges with tan-
gent lines. That is, in the state-
ment of the Theorem we replace←→
AE with the tangent at A and←→BC
with the tangent at B. If we carry
this replacement of edge with tan-
gent line throughout the proof of
Theorem 15.19 the proof is still
correct!

A=E

F

C=B

D

R=M

L

N

P

Q
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Theorem 15.28. If ABFD is a quadrangle inscribed in a non-
singular point conic, let P be the intersection of the tangent at A
with ←→BF , Q the intersection of the tangent at B and ←→AD, and R
the intersection of ←→AB with ←→DF . Then, P , Q, and R are collinear.

If we let A move to D and B move to C we get the following result:

Theorem 15.29. If AEBF is a quadrangle inscribed in a non-
singular point conic, let P be the intersection of ←→AE with ←→BF , Q
the intersection of the tangent at A with the tangent at B, and R
the intersection of the tangent at E and the tangent at F . Then, P ,
Q, and R are collinear.

The previous two results were proven in section 9.8. The following
result describes a deep connection between line and point conics.

Theorem 15.30. The set of tangents to a non-singular point conic
form a line conic.

Proof:

Let A, B, and C be points on the
conic. Let the tangent at A and B
meet at L, the tangent at A and
C meet at M , and the tangent
at B and C meet at N . Then, L,
M , and N are not collinear, as the
tangents at two distinct points on
a conic cannot coincide (exercise).

By Corollary 9.7 there is a projectivity T from the pencil of points
on the tangent at B to the pencil of points on the tangent at A with
T (N,L,B) = (C,M,N). The lines joining corresponding points under
T are precisely the three tangent lines. Thus, we have the beginnings of
a line conic, at least for these three pairs of points.
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Now, let P be any other point on
the conic. Let the tangent at P
meet the tangent at B at R and
the tangent at C at S. If we can
show that T (R) = S, then we will
have shown that the lines joining
corresponding points of T are al-
ways tangent lines to the point
conic. Thus, the line conic gener-
ated by T is the set of tangents
to the point conic and our proof
would be complete.

To show that T (R) = S, we
will use some of the theorems we
have proven on tangents and con-
ics. We apply Theorem 15.29 to
quadrangle APBC. Then, U =
AP · BC, L (intersection of tan-
gent at A with tangent at B), and
S (intersection of tangent at P
with tangent at C) are collinear.
If we apply the same theorem to
quadrangle APCB, we get that
U , M , and R are collinear.

Now, recall the projectivity version of Pappus’s Theorem —Theo-
rem 9.9. By this theorem, T defines a unique line called the axis of
homology, which contains the intersections of the cross joins of all pairs
of corresponding points. One cross join would be LT (N) · NT (L) =
LC · NM = C Another would be LT (B) · BT (L) = LN · BM = B.
We conclude that BC is the axis of homology. Then, it must the the
case that LT (R) · RT (L) = LT (R) · RM must be on BC. Since RM
intersects BC at U , we have that LT (R) also intersects BC at U . But,
LS intersects BC at U . Thus, T (R) and S are both on LU and both
on the tangent at C. Since two lines can only intersect in one point, we
conclude that T (R) = S. 2

Exercise 15.4.1. Show that the tangents at two distinct points on a point
conic cannot be the same line.
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Exercise 15.4.2. Prove that if a triangle is inscribed in a point conic,
then the tangents to the conic at the vertices of the triangle meet the op-
posite sides of the triangles at three points which must be collinear. [Hint: In
Theorem 15.28, consider what happens as point F moves to become D.]

Exercise 15.4.3. Let P1, P2, P3, P4, and P5 be five distinct points of a
non-degenerate point conic. Let Q = P1P2 · P4P5, R = P2P3 · P5P1 and S be
the intersection of P3P4 with the tangent to the conic at P1. Show that Q, R,
and S are collinear. [Hint: Consider Pascal’s Theorem where one of the six
points approaches another.]

Exercise 15.4.4. Show that Exercise 15.4.3 can be used to construct the
tangent to a conic at a specific point. Describe the construction.

Exercise 15.4.5. Let P1, P2, P3, and P4 be four distinct points of a non-
degenerate point conic. Let Q = P1P2 · P3P4, R = P1P3 · P2P4, S be the
intersection of the tangent to the conic at P1 with the tangent at P4, and T be
the intersection of the tangent at P2 with the tangent at P3. Show that Q, R, S,
and T are collinear. [Hint: Consider Pascal’s Theorem on P1P2aP2bP4P3aP3b
where we let the a, b points merge and also on P1aP1bP2P4aP4bP3 where we let
the a, b points merge.]

Definition 15.20. A point P is a point of contact of a non-
degenerate line conic if it lies on exactly one line of the conic.

Exercise 15.4.6. What concept is the dual for a point of contact? Show that
there exists one and only one point of contact on each line of a non-degenerate
line conic.

Exercise 15.4.7. What is the dual theorem to Theorem 15.30?


