| Name | Formula | English |
|---|---|---|
| negation | \(\neg P\),~\(P\), \(\overline{P}\) | not P |
| conjunction | P\(\land\)Q | P and Q |
| disjunction | P\(\lor\)Q | P or Q |
| implication | P\(\Rightarrow\)Q | P implies Q |
| biconditional | P\(\Leftrightarrow\)Q | P if and only if Q |
| P | \(\neg\)P |
|---|---|
| F | T |
| T | F |
| P | Q | P\(\land\)Q |
|---|---|---|
| F | F | F |
| F | T | F |
| T | F | F |
| T | T | T |
| P | Q | P\(\lor\)Q |
|---|---|---|
| F | F | F |
| F | T | T |
| T | F | T |
| T | T | T |
| P | Q | P\(\Rightarrow\)Q |
|---|---|---|
| F | F | T |
| F | T | T |
| T | F | F |
| T | T | T |
| P | Q | P\(\Leftrightarrow\)Q |
|---|---|---|
| F | F | T |
| F | T | F |
| T | F | F |
| T | T | T |
| P | Q | P\(\oplus\)Q |
|---|---|---|
| F | F | F |
| F | T | T |
| T | F | T |
| T | T | F |
| Connective | Precedence |
|---|---|
| \(\neg\) | \(1\) |
| \(\land\) | 2 |
| \(\lor\) | 3 |
| \(\Rightarrow\) | 4 |
| \(\Leftrightarrow\) | 5 |
These are some of the ways to express the implication P\(\Rightarrow\)Q in English.
These are some of the ways to express the biconditional \(p\Leftrightarrow q\) in English.
Question: which of these are tautology? contradiction? contingency?
Here are some important logical equivalences. Verify!