Name | Formula | English |
---|---|---|
negation | \(\neg P\),~\(P\), \(\overline{P}\) | not P |
conjunction | P\(\land\)Q | P and Q |
disjunction | P\(\lor\)Q | P or Q |
implication | P\(\Rightarrow\)Q | P implies Q |
biconditional | P\(\Leftrightarrow\)Q | P if and only if Q |
P | \(\neg\)P |
---|---|
F | T |
T | F |
P | Q | P\(\land\)Q |
---|---|---|
F | F | F |
F | T | F |
T | F | F |
T | T | T |
P | Q | P\(\lor\)Q |
---|---|---|
F | F | F |
F | T | T |
T | F | T |
T | T | T |
P | Q | P\(\Rightarrow\)Q |
---|---|---|
F | F | T |
F | T | T |
T | F | F |
T | T | T |
P | Q | P\(\Leftrightarrow\)Q |
---|---|---|
F | F | T |
F | T | F |
T | F | F |
T | T | T |
P | Q | P\(\oplus\)Q |
---|---|---|
F | F | F |
F | T | T |
T | F | T |
T | T | F |
Connective | Precedence |
---|---|
\(\neg\) | \(1\) |
\(\land\) | 2 |
\(\lor\) | 3 |
\(\Rightarrow\) | 4 |
\(\Leftrightarrow\) | 5 |
These are some of the ways to express the implication P\(\Rightarrow\)Q in English.
These are some of the ways to express the biconditional \(p\Leftrightarrow q\) in English.
Question: which of these are tautology? contradiction? contingency?
Here are some important logical equivalences. Verify!