
MCS-375: Algorithms: Analysis and Design Handout #A4

San Skulrattanakulchai

Gustavus Adolphus College Sep 12, 2014

“Exponential” Algorithms

Fix a problem having input size n. The term “algorithm” in this handout means an

algorithm for solving this problem. Our convention is to assume all running time are

worst-case, unless we state otherwise.

A good algorithm runs in polynomial time O(nk) for some k > 0. A problem that admits

a good algorithm is said to be tractable; it is said to be intractable otherwise.

A superpolynomial time algorithm runs in time ω(p) for any polynomial function p.

An exponential time algorithm runs in time Ω(an) for some constant a > 1.

Notes

(i) Any polynomial function is better than any exponential function.

Theorem. na is O(bn) for any constants a, b, where a > 0 and b > 1.

Proof. . . .

(ii) A super-polynomial time algorithm can be better than an exponential-time algo-

rithm.

Exercise Find a function that is super-polynomial but not exponential.

(iii) The running time of some algorithm is worse than any exponential. For example,

f(n) = n! is not O(g) for any exponential function g.

Theorem. an is O(n!) for any constant a.

Proof. . . .

(iv) It’s customary to refer to the superpolynomial functions as exponential. This sloppy

language is widespread, probably as widespred as the incorrect usage of “its” for

“it’s” (and vice versa) in English.

2 MCS-375: Handout #A4

Two “exponential-time” algorithms

The Subset Sum Problem (SSUM) Given a set S of n positive integers and a target

integer t, find out if there exists a subset of S whose sum is exactly t.

Example: Let S = {1, 2, 6}.
If target t = 3, then answer is YES since numbers in {1, 2} sum to 3.

If target t = 4, then answer is NO since no subset of S sums to 4.

Here is a naive algorithm for SSUM.

for each subset T of S do

if the elements of T sum to t then

return YES

return NO

The algorithm can check 2n possible solutions and so it has an exponential time bound.

Here is an implementation of the above high-level algorithm.

procedure main {
S ← input array of positive integers

t← input target number

n← S.length

solution ← NO

check(1, 0)

return solution

}
procedure check(i, sum) {

if i ≤ n then {
check(i+ 1, sum) /* don’t include S[i] in the set */

check(i+ 1, sum + S[i]) /* include S[i] in the set */

} else if sum = t then

solution ← YES

}

MCS-375: Handout #A4 3

The Travelling Salesman Problem (TSP) Given n cities and the distances between

all ordered pairs of distinct cities, find a shortest route that starts at city 1, visits each

city, and returns to city 1.

Here is a “naive algorithm” for TSP.

/* algorithm sets min dist to length of a shortest salesman tour */

procedure main {
min dist ←∞
for each permutation π of the integers 2, . . . , n do {

d ← length of the route starting at city 1,

visiting cities 2, . . . , n in the order given by π,

and returning to city 1;

min dist ← min{min dist, d}
}
return min dist

}

This high-level algorithm checks (n − 1)! possible solutions, each in time Ω(n). So its

running time is Ω(n!).

The next low-level algorithm shows that this high-level algorithm can be implemented

so that the running time is O(n!).

4 MCS-375: Handout #A4

Here is an implementation of the above high-level algorithm. Assume the distances are

given as the 2-d array dist[1..n, 1..n]. We use pi[1..n] to keep the permutations.

procedure main {
min dist ←∞
for j ← 1 to n do

pi[j]← j

perm(2)

return min dist

}
procedure perm(i) {

if i = n then {
d ← dist[pi[n], 1]

for j ← 1 to n− 1 do

d ← d + dist[pi[j], pi[j + 1]]

if d < min dist then

min dist ← d

} else {
for j ← i to n do {

swap(pi[i], pi[j])

perm(i+ 1)

swap(pi[i], pi[j])

}
}

}

