1.5 Input and Output

Standard audio As a final example of a basic abstraction for output, we consid-
er StdAudio, a library that you can use to play, manipulate, and synthesize sound.
You probably have used your computer to process music. Now you can write pro-
grams to do so. At the same time, you will learn some concepts behind a venerable
and important area of computer science and scientific computing: digital signal
processing. We will merely scratch the surface of this fascinating subject, but you
may be surprised at the simplicity of the underlying concepts.

Concert A. Sound is the perception of the vibration of molecules—in particular,
the vibration of our eardrums. Therefore, oscillation is the key to understanding
sound. Perhaps the simplest place to start is to consider the musical note A above
middle C, which is known as concert A. This note is nothing more than a sine wave,
scaled to oscillate at a frequency of 440 times per second. The function sin(¢) re-
peats itself once every 27 units, so if we measure ¢ in seconds and plot the function
sin(2mt x 440), we get a curve that oscillates 440 times per second. When you play
an A by plucking a guitar string, pushing air through a trumpet, or causing a small
cone to vibrate in a speaker, this sine wave is the prominent part of the sound that
you hear and recognize as concert A. We measure frequency in hertz (cycles per sec-
ond). When you double or halve the frequency, you move up or down one octave
on the scale. For example, 880 hertz is one octave above concert A and 110 hertz is
two octaves below concert A. For reference, the frequency range of human hearing
is about 20 to 20,000 hertz. The amplitude (y-value) of a sound corresponds to the
volume. We plot our curves between —1 and +1 and assume that any devices that
record and play sound will scale as appropriate, with further scaling controlled by
you when you turn the volume knob.

note i frequency
1 4 6 9 11

A 0 440.00 AVAVAVAVAVAVAVAVAN
At or B, 1 466.16 AVAVAVAVAVAVAVAVAVA
B 2 493.88 AVAVAVAVAVAVAVAVAVAS
C 3 523.25 AVAVAVAVAVAVAVAVAVAVA
C:or Db 4 554.37 AVAVAVAVAVAVAVAVAVAVAV
D 5 587.33 AVAVAVAVAVAVAVAVAVAVAVAN
D: or Bb 6 622.25 AVAVAVAVAVAVAVAVAVAVAVAVA
SRS EIETER E 7 659.26 AVAVAVAVAVAVAVAVAVAVAVAVAVS
F 8 698.46 AVAVAVAVAVAVAVAVAVAVAVAVAVAV
J F:or G 9 739.99 \ AVAVAVAVAVAVAVAVAVAVAVAVAVAVAR
S . ¢ 10 783.99 augw ot AAAANAANAAAAAAAN
= G: or A, 11 830.61 AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA:
A 12 880.00 AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA'

Notes, numbers, and waves

155

156

Elements of Programming

Other notes. A simple mathematical formula characterizes the other notes on the
chromatic scale. There are 12 notes on the chromatic scale, evenly spaced on a
logarithmic (base 2) scale. We get the ith note above a given note by multiplying its
frequency by the (i/12)th power of 2. In other words, the frequency of each note
in the chromatic scale is precisely the frequency of the previous note in the scale
multiplied by the twelfth root of 2 (about 1.06). This information suffices to create
music! For example, to play the tune Frere Jacques, play each of the notes A B C# A
by producing sine waves of the appropriate frequency for about half a second each,
and then repeat the pattern. The primary method in the StdAudio library, StdAu-
dio.play(Q), allows you to do exactly this.

Sampling. For digital sound, we represent a curve by sampling it at regular inter-
vals, in precisely the same manner as when we plot function graphs. We sample
sufficiently often that we have an accurate representation of the curve—a widely
used sampling rate for digital sound is 44,100 samples per second. For concert A,
that rate corresponds to plotting each cycle of the sine wave by sampling it at about
100 points. Since we sample at regular intervals, we only need to compute the y-
coordinates of the sample points. It is that simple: we represent sound as an array of
real numbers (between —1 and +1). The method StdAudio.play() takes an array
as its argument and plays the sound represented by that array on your computer.

For example, suppose that you want to play concert A for 10 seconds. At
44,100 samples per second, you need a double array of length 441,001. To fill in
the array, use a for loop that samples the function sin(2mt x 440) at t = 0/44,100,
1/44,100, 2/44,100, 3/44,100, ..., 441,000/44,100. Once we fill the array with these
values, we are ready for StdAudio.play(), as in the following code:

int SAMPLING_RATE = 44100; // samples per second
int hz = 440; // concert A
double duration = 10.0; // ten seconds

int n = (int) (SAMPLING_RATE * duration);

double[] a = new double[n+1];

for (int i = 0; i <= n; i++)

ali] = Math.sin(2 * Math.PI * i * hz / SAMPLING_RATE);

StdAudio.play(a);
This code is the “Hello, World” of digital audio. Once you use it to get your com-
puter to play this note, you can write code to play other notes and make music!
The difference between creating sound and plotting an oscillating curve is nothing

1.5 Input and Output

157

more than the output device. Indeed, it is instructive and entertaining to send the
same numbers to both standard drawing and standard audio (see EXgrcise 1.5.27).

Saving to a file. Music can take up a lot of space on your
computer. At 44,100 samples per second, a four-minute
song corresponds to 4 X 60 x 44100 = 10,584,000 num-
bers. Therefore, it is common to represent the numbers
corresponding to a song in a binary format that uses less
space than the string-of-digits representation that we use
for standard input and output. Many such formats have
been developed in recent years—StdAudio uses the .wav
format. You can find some information about the .wav
format on the booksite, but you do not need to know the
details, because StdAudio takes care of the conversions
for you. Our standard library for audio allows you to read
.wav files, write .wav files, and convert .wav files to arrays
of doub1e values for processing.

PlayThatTune (ProGraM 1.5.7) is an example that
shows how you can use StdAudio to turn your computer
into a musical instrument. It takes notes from standard in-
put, indexed on the chromatic scale from concert A, and
plays them on standard audio. You can imagine all sorts
of extensions on this basic scheme, some of which are ad-
dressed in the exercises.

WE INCLUDE STANDARD AUDIO IN OUR basic arsenal of program-
ming tools because sound processing is one important ap-
plication of scientific computing that is certainly familiar
to you. Not only has the commercial application of digital
signal processing had a phenomenal impact on modern
society, but the science and engineering behind it com-
bine physics and computer science in interesting ways. We
will study more components of digital signal processing in
some detail later in the book. (For example, you will learn
in SECTION 2.1 how to create sounds that are more musical
than the pure sounds produced by P1ayThatTune.)

1/40 second (various sample rates)
5,512 samples/second, 137 samples

11,025 samples/second, 275 samples

22,050 samples/second, 551 samples

44,100 samples/second (various times)

1/40 second, 1,102 samples

1/1000 second

1/200 second, 220 samples

'-ﬁ."v’f '-»_A__‘\/f._.-‘

1/1000 second

1/1,000 second, 44 samples

Sampling a sine wave

158 Elements of Programming

Program 1.5.7 Digital signal processing

public class PlayThatTune

{ pitch distance from A
public static void main(String[] args) duration | note play time
{ // Read a tune from StdIn and play it. hz frequency
int SAMPLING_RATE = 44100; n number of samples
while (!StdIn.isEmpty()) al] sampled sine wave
{ // Read and play one note. —
int pitch = StdIn.readInt();
double duration = StdIn.readDouble();
double hz = 440 * Math.pow(2, pitch / 12.0);
int n = (int) (SAMPLING_RATE * duration);
doubTe[] a = new double[n+1];
for (int i = 0; i <= n; i++)
a[i] = Math.sin(2*Math.PI * i * hz / SAMPLING_RATE);
StdAudio.play(a);
}
3
}
This data-driven program turns your computer into a musical instrument. It reads notes
and durations from standard input and plays a pure tone corresponding to each note for the
specified duration on standard audio. Each note is specified as a pitch (distance from concert
A). After reading each note and duration, the program creates an array by sampling a sine
wave of the specified frequency and duration at 44,100 samples per second, and plays it using
StdAudio.play ().
. L |
% more elise.txt 0 - 4 |
‘o Gt
a |
7 0.25
6 0.25 % java PlayThatTune < elise.txt
7 0.25
2 0.25
5 0.25
3 0.25
0 0.50

1.5 Input and Output 159

The API table below summarizes the methods in StdAudio:

pubTlic class StdAudio

void play(String filename) play the given .wav file
void play(double[] a) play the given sound wave
void play(double x) play sample for 1/44,100 second

void save(String filename, double[] a) savetoa.wavfile

double[] read(String filename) read from a .wayv file

API for our library of static methods for standard audio

Summary I/O is a compelling example of the power of abstraction because
standard input, standard output, standard drawing, and standard audio can be tied
to different physical devices at different times without making any changes to pro-
grams. Although devices may differ dramatically, we can write programs that can
do I/0 without depending on the properties of specific devices. From this point
forward, we will use methods from StdOut, StdIn, StdDraw, and/or StdAudio in
nearly every program in this book. For economy, we collectively refer to these li-
braries as Std*. One important advantage of using such libraries is that you can
switch to new devices that are faster, are cheaper, or hold more data without chang-
ing your program at all. In such a situation, the details of the connection are a mat-
ter to be resolved between your operating system and the Std* implementations.
On modern systems, new devices are typically supplied with software that resolves
such details automatically both for the operating system and for Java.

